13,002 research outputs found

    Apollo experience report: The AN/ARD-17 direction finding system

    Get PDF
    This report contains a statement of the operational philosophy and requirements leading to the development of the AN/ARD-17 direction-finding system. The technical problems encountered and the solutions devised in the AN/ARD-17 development are discussed. An evaluation of the system under actual operational conditions is included

    A system for aerodynamic design and analysis of supersonic aircraft. Part 1: General description and theoretical development

    Get PDF
    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients

    Atmospheric variability and air-sea interaction

    Get PDF
    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index

    A linearized theory method of constrained optimization for supersonic cruise wing design

    Get PDF
    A linearized theory wing design and optimization procedure which allows physical realism and practical considerations to be imposed as constraints on the optimum (least drag due to lift) solution is discussed and examples of application are presented. In addition to the usual constraints on lift and pitching moment, constraints are imposed on wing surface ordinates and wing upper surface pressure levels and gradients. The design procedure also provides the capability of including directly in the optimization process the effects of other aircraft components such as a fuselage, canards, and nacelles

    A visual programming environment for the Navier-Stokes computer

    Get PDF
    The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem

    Technique for extending the frequency range of digital dividers

    Get PDF
    A technique for extending the frequency range of a presettable digital divider is described. The conventional digital divider consists of several counter stages with the count of each stage compared to a preselected number. When the counts for all stages are equal to the preselected numbers, an output pulse is generated and all stages are reset. For high input frequencies, the least significant stage of the divider has to be reset in a very short time. This limits the frequency that can be handled by the conventional digital divider. This invention provides a technique in which the second least significant and higher stages are reset and the least significant stage is permitted to free-run. Hence, the time in which the reset operation can be performed is increased thereby extending the frequency range of the divider

    Energy efficient transport technology: Program summary and bibliography

    Get PDF
    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements

    Wind tunnel test results of a new leading edge flap design for highly swept wings, a vortex flap

    Get PDF
    A leading edge flap design for highly swept wings, called a vortex flap, was tested on an arrow wing model in a low speed wind tunnel. A vortex flap differs from a conventional plain flap in that it has a leading edge tab which is counterdeflected from the main portion of the flap. This results in intentional separation at the flap leading edge, causing a vortex to form and lie on the flap. By trapping this vortex, the vortex flap can result in significantly improved wing flow characteristics relative to conventional flaps at moderate to high angles of attack, as demonstrated by the flow visualization results of this tests

    Supersonic aircraft Patent

    Get PDF
    Design of supersonic aircraft with novel fixed, swept wing planfor

    The effects of centrifuge radius on the performance of entry tasks

    Get PDF
    Effects of centrifuge radius on entry task performance - discrete response task, tracking task, and transfer of training effect
    corecore