26 research outputs found

    Clinical pregenetic screening for stroke monogenic diseases: Results from lombardia GENS registry

    Get PDF
    BACKGROUND AND PURPOSE: Lombardia GENS is a multicentre prospective study aimed at diagnosing 5 single-gene disorders associated with stroke (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, Fabry disease, MELAS [mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes], hereditary cerebral amyloid angiopathy, and Marfan syndrome) by applying diagnostic algorithms specific for each clinically suspected disease METHODS: We enrolled a consecutive series of patients with ischemic or hemorrhagic stroke or transient ischemic attack admitted in stroke units in the Lombardia region participating in the project. Patients were defined as probable when presenting with stroke or transient ischemic attack of unknown etiopathogenic causes, or in the presence of <3 conventional vascular risk factors or young age at onset, or positive familial history or of specific clinical features. Patients fulfilling diagnostic algorithms specific for each monogenic disease (suspected) were referred for genetic analysis. RESULTS: In 209 patients (57.4\ub114.7 years), the application of the disease-specific algorithm identified 227 patients with possible monogenic disease. Genetic testing identified pathogenic mutations in 7% of these cases. Familial history of stroke was the only significant specific feature that distinguished mutated patients from nonmutated ones. The presence of cerebrovascular risk factors did not exclude a genetic disease. CONCLUSIONS: In patients prescreened using a clinical algorithm for monogenic disorders, we identified monogenic causes of events in 7% of patients in comparison to the 1% to 5% prevalence reported in previous series

    Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina

    Get PDF
    Several medically important mosquito-borne flaviviruses have been detected in Argentina in recent years: Dengue (DENV), St. Louis encephalitis (SLEV), West Nile (WNV) and Yellow Fever (YFV) viruses. Evidence of Bussuquara virus (BSQV) and Ilheus virus (ILHV) activity were found, but they have not been associated with human disease. Non-human primates can act as important hosts in the natural cycle of flaviviruses and serological studies can lead to improved understanding of virus circulation dynamics and host susceptibility. From July鈥揂ugust 2010, we conducted serological and molecular surveys in free鈥搑anging black howlers (Alouatta caraya) captured in northeastern Argentina. We used 90% plaque-reduction neutralization tests (PRNT90) to analyze 108 serum samples for antibodies to WNV, SLEV, YFV, DENV (serotypes 1and 3), ILHV, and BSQV. Virus genome detection was performed using generic reverse transcription (RT)-nested PCR to identify flaviviruses in 51 antibody-negative animals. Seventy animals had antibodies for one or more flaviviruses for a total antibody prevalence of 64.8% (70/108). Monotypic (13/70, 19%) and heterotypic (27/70, 39%) patterns were differentiated. Specific neutralizing antibodies against WNV, SLEV, DENV-1, DENV-3, ILHV, and BSQV were found. Unexpectedly, the highest flavivirus antibody prevalence detected was to WNV with 9 (8.33%) monotypic responses. All samples tested by (RT)-nested PCR were negative for viral genome. This is the first detection of WNV-specific antibodies in black howlers from Argentina and the first report in free-ranging non-human primates from Latin-American countries. Given that no animals had specific neutralizing antibodies to YFV, our results suggest that the study population remains susceptible to YFV. Monitoring of these agents should be strengthened to detect the establishment of sylvatic cycles of flaviviruses in America and evaluate risks to wildlife and human health.Fil: Morales, Maria Alejandra. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Fabbri, Cintia M.. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Zunino, Gabriel Eduardo. Universidad Nacional de General Sarmiento. Instituto del Conurbano; Argentina. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas; ArgentinaFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estaci贸n Biol贸gica de Usos M煤ltiples (Sede Corrientes); ArgentinaFil: Luppo, Victoria C.. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Enr铆a, Delia A.. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Levis, Silvana C.. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; ArgentinaFil: Calder贸n, Gladys Ethel. Direcci贸n Nacional de Instituto de Investigaci贸n. Administraci贸n Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbran". Instituto Nacional de Enfermedades Virales Humanas; Argentin
    corecore