690 research outputs found

    Herschel observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium

    Get PDF
    Long-duration gamma-ray bursts (GRBs) are indisputably related to star formation, and their vast luminosity in gamma rays pin-points regions of star formation independent of galaxy mass. As such, GRBs provide a unique tool for studying star forming galaxies out to high-z independent of luminosity. Most of our understanding of the properties of GRB hosts (GRBHs) comes from optical and near-infrared (NIR) follow-up observations, and we therefore have relatively little knowledge of the fraction of dust-enshrouded star formation that resides within GRBHs. Currently ~20% of GRBs show evidence of significant amounts of dust along the line of sight to the afterglow through the host galaxy, and these GRBs tend to reside within redder and more massive galaxies than GRBs with optically bright afterglows. In this paper we present Herschel observations of five GRBHs with evidence of being dust-rich, targeted to understand the dust attenuation properties within GRBs better. Despite the sensitivity of our Herschel observations, only one galaxy in our sample was detected (GRBH 070306), for which we measure a total star formation rate (SFR) of ~100Mstar/yr, and which had a relatively high stellar mass (log[Mstar]=10.34+0.09/-0.04). Nevertheless, when considering a larger sample of GRBHs observed with Herschel, it is clear that stellar mass is not the only factor contributing to a Herschel detection, and significant dust extinction along the GRB sightline (A_{V,GRB}>1.5~mag) appears to be a considerably better tracer of GRBHs with high dust mass. This suggests that the extinguishing dust along the GRB line of sight lies predominantly within the host galaxy ISM, and thus those GRBs with A_{V,GRB}>1~mag but with no host galaxy Herschel detections are likely to have been predominantly extinguished by dust within an intervening dense cloud.Comment: 14 pages, 7 figures. Accepted for publication in A&

    A Giant Crater on 90 Antiope?

    Full text link
    Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (~50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ~17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.Comment: 30 pages, 3 Tables, 8 Figures. Accepted for publication in Icaru

    Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity

    Get PDF
    We have studied the two-dimensional flow of balls in a small angle funnel, when either the side walls are rough or the balls are polydisperse. As in earlier work on monodisperse flows in smooth funnels, we observe the formation of kinematic shock waves/density waves. We find that for rough walls the flows are more disordered than for smooth walls and that shock waves generally propagate more slowly. For rough wall funnel flow, we show that the shock velocity and frequency obey simple scaling laws. These scaling laws are consistent with those found for smooth wall flow, but here they are cleaner since there are fewer packing-site effects and we study a wider range of parameters. For pipe flow (parallel side walls), rough walls support many shock waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of balls with varying sizes, we find that flows with weak polydispersity behave qualitatively similar to monodisperse flows. For strong polydispersity, scaling breaks down and the shock waves consist of extended areas where the funnel is blocked completely.Comment: 11 pages, 15 figures; accepted for PR

    Grain Dynamics in a Two-dimensional Granular Flow

    Full text link
    We have used particle tracking methods to study the dynamics of individual balls comprising a granular flow in a small-angle two-dimensional funnel. We statistically analyze many ball trajectories to examine the mechanisms of shock propagation. In particular, we study the creation of, and interactions between, shock waves. We also investigate the role of granular temperature and draw parallels to traffic flow dynamics.Comment: 17 pages, 24 figures. To appear in Phys.Rev.E. High res./color figures etc. on http://www.nbi.dk/CATS/Granular/GrainDyn.htm

    Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae

    Get PDF
    The alarming rate at which antibiotic resistance is occurring in human pathogens causes a pressing need for improved diagnostic technologies aimed at rapid detection and point-of-care testing to support quick decision making regarding antibiotic therapy and patient management. Here, we report the successful development of an electrochemical biosensor to detect <i>bla</i><sub><i>NDM</i></sub>, the gene encoding the emerging New Delhi metallo-beta-lactamase, using label-free electrochemical impedance spectroscopy (EIS). The presence of this gene is of critical concern because organisms harboring <i>bla</i><sub><i>NDM</i></sub> tend to be multiresistant, leaving very few treatment options. For the EIS assay, we used a <i>bla</i><sub><i>NDM</i></sub>-specific PNA probe that was designed by applying a new approach that combines <i>in silico</i> probe design and fluorescence-based DNA microarray validation with electrochemical testing on gold screen-printed electrodes. The assay was successfully demonstrated for synthetic targets (LOD = 10 nM), PCR products (LOD = 100 pM), and direct, amplification-free detection from a <i>bla</i><sub><i>NDM</i></sub>-harboring plasmid. The biosensor’s specificity, preanalytical requirements, and performance under ambient conditions were demonstrated and successfully proved its suitability for further point-of-care test development

    Identification of z~>2 Herschel 500 micron sources using color-deconfusion

    Get PDF
    We present a new method to search for candidate z~>2 Herschel 500{\mu}m sources in the GOODS-North field, using a S500{\mu}m/S24{\mu}m "color deconfusion" technique. Potential high-z sources are selected against low-redshift ones from their large 500{\mu}m to 24{\mu}m flux density ratios. By effectively reducing the contribution from low-redshift populations to the observed 500{\mu}m emission, we are able to identify counterparts to high-z 500{\mu}m sources whose 24{\mu}m fluxes are relatively faint. The recovery of known z~4 starbursts confirms the efficiency of this approach in selecting high-z Herschel sources. The resulting sample consists of 34 dusty star-forming galaxies at z~>2. The inferred infrared luminosities are in the range 1.5x10^12-1.8x10^13 Lsun, corresponding to dust-obscured star formation rates (SFRs) of ~260-3100 Msun/yr for a Salpeter IMF. Comparison with previous SCUBA 850{\mu}m-selected galaxy samples shows that our method is more efficient at selecting high-z dusty galaxies with a median redshift of z=3.07+/-0.83 and 10 of the sources at z~>4. We find that at a fixed luminosity, the dust temperature is ~5K cooler than that expected from the Td-LIR relation at z<1, though different temperature selection effects should be taken into account. The radio-detected subsample (excluding three strong AGN) follows the far-infrared/radio correlation at lower redshifts, and no evolution with redshift is observed out to z~5, suggesting that the far-infrared emission is star formation dominated. The contribution of the high-z Herschel 500{\mu}m sources to the cosmic SFR density is comparable to that of SMG populations at z~2.5 and at least 40% of the extinction-corrected UV samples at z~4 (abridged).Comment: 33 pages in emulateapj format, 24 figures, 2 tables, accepted for publication in the ApJ

    (16) Psyche: A mesosiderite-like asteroid?

    Full text link
    Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,±\pm\,0.26\,g\cdotcm3^{-3} for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (\sim7.8\,g\cdotcm3^{-3}), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density \sim4.25\,\cdotcm3^{-3}). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,±\pm\,200}\,m at 150\,km from Psyche (0.2\%\,×\times\,RHill_{Hill}, the Hill radius) and 800\,±\pm\,200\,m at 2,000\,km (3\%\,×\times\,RHillR_{Hill}). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.Comment: 16 page

    The fate of the interstellar medium in early-type galaxies I. First direct measurement of the timescale of dust removal

    Get PDF
    An important aspect of quenching star formation is the removal of the cold interstellar medium (ISM; non-ionised gas and dust) from a galaxy. In addition, dust grains can be destroyed in a hot or turbulent medium. The adopted timescale of dust removal usually relies on uncertain theoretical estimates. It is tricky to track the dust removal, because usually dust is constantly replenished by consecutive generations of stars. Our objective is to measure observationally the timescale of dust removal. We here explore an approach to select galaxies which do have detectable amounts of dust and cold ISM but exhibit a low current dust production rate. Any decrease of the dust and gas content as a function of the age of such galaxies therefore must be attributed to processes governing the ISM removal. We used a sample of galaxies detected by Herschel in the far-infrared with visually assigned early-type morphology or spirals with red colours. We also obtained JCMT/SCUBA-2 observations for five of them. We discovered an exponential decline of the dust-to-stellar mass ratio with age, which we interpret as an evolutionary trend of dust removal from these galaxies. For the first time we directly measure the dust removal timescale in such galaxies to be tau=(2.5+-0.4) Gyr (the corresponding half-life time is (1.75+-0.25) Gyr). This quantity may be used in models in which it must be assumed a priori and cannot be derived. Any process which removes dust in these galaxies, such as dust grain destruction, cannot happen on shorter timescales. The timescale is comparable to the quenching timescales found in simulations for galaxies with similar stellar masses. The dust is likely of internal, not external origin. It was either formed in the past directly by supernovae, or from seeds produced by SNe and with grain growth in the ISM contributing substantially to the dust mass accumulation.Comment: Astronomy & Astrophysics, accepted; 13 pages, 9 figures, 1 tabl

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
    corecore