119 research outputs found

    Is Aboriginal Food Less Allergenic? Comparing IgE-Reactivity of Eggs from Modern and Ancient Chicken Breeds in a Cohort of Allergic Children

    Get PDF
    BACKGROUND: Hen's egg allergy ranks among the most frequent primary food allergies in children. We aimed to investigate sensitization profiles of egg allergic patients and compare in vitro IgE reactivities of eggs from ancient chicken breeds (Araucana and Maran) with those from conventional laying hen hybrids. METHODOLOGY: Egg allergic children (n = 25) were subjected to skin prick test, double blind placebo controlled food challenge, and sensitization profiles to Gal d 1-5 were determined by allergen microarray. IgE binding and biological activity of eggs from different chicken breeds were investigated by immunoblot, ELISA, and mediator release assays. PRINCIPAL FINDINGS: We found that Gal d 1 and Gal d 2 are generally major egg allergens, whereas Gal d 3-5 displayed high sensitization prevalence only in patients reacting to both, egg white and yolk. It seems that the onset of egg allergy is mediated by egg white allergens expanding to yolk sensitization in later stages of disease. Of note, egg white/yolk weight ratios were reduced in eggs from Auraucana and Maran chicken. As determined in IgE immunoblots and mass analysis, eggs from ancient chicken breeds did not differ in their protein composition. Similar IgE-binding was observed for all egg white preparations, while an elevated allergenicity was detected in egg yolk from Araucana chicken. CONCLUSION/SIGNIFICANCE: Our results on allergenicity and biological activity do not confirm the common assumption that aboriginal food might be less allergenic. Comprehensive diagnosis of egg allergy should distinguish between reactivity to hen's egg white and yolk fractions to avoid unnecessary dietary restrictions to improve life quality of the allergic child and its family

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Factors That Drive Peptide Assembly and Fibril Formation: Experimental and Theoretical Analysis of Sup35 NNQQNY Mutants

    Full text link
    Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms

    Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries

    Get PDF
    Background Global inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia. Methods Cancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0-14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995-99, 2000-04, and 2005-09), sex, and age at diagnosis (< 1, 1-4, 5-9, and 10-14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). Findings We analysed data from 89 828 children from 198 registries in 53 countries. During 1995-99, 5-year agestandardised net survival for all lymphoid leukaemias combined ranged from 10.6% (95% CI 3.1-18.2) in the Chinese registries to 86.8% (81.6-92.0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005-09, when age-standardised survival for lymphoid leukaemias ranged from 52.4% (95% CI 42.8-61.9) in Cali, Colombia, to 91.6% (89.5-93.6) in the German registries, and for AML ranged from 33.3% (18.9-47.7) in Bulgaria to 78.2% (72.0-84.3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000-04 and 2005-09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1-4 and 5-9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls. Interpretation Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood survival

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Aircraft routing with minimal climate impact: The REACT4C climate cost function modelling approach (V1.0)

    Get PDF
    In addition to CO2, the climate impact of aviation is strongly influenced by non-CO2 emissions, such as nitrogen oxides, influencing ozone and methane, and water vapour, which can lead to the formation of persistent contrails in ice supersaturated regions. Because these non-CO2 emission effects are characterised by a short lifetime, their climate impact largely depends on emission location and time, i.e. emissions in certain locations (or times) can lead to a greater climate impact (even on the global average) than the same emission in other locations (or times). Avoiding these climate sensitive regions might thus be beneficial to climate. Here, we describe a modelling chain for investigating this climate impact mitigation option. It forms a multi-step modelling approach, starting with the simulation of the fate of emissions released at a certain location and time (time-region grid points). This is performed with the chemistry–climate model EMAC, extended by the two submodels AIRTRAC (V1.0) and CONTRAIL (V1.0), which describe the contribution of emissions to the composition of the atmosphere and to contrail formation, respectively. The impact of emissions from the large number of time-region grid points is efficiently calculated by applying a Lagrangian scheme. EMAC also includes the calculation of radiative impacts, which are, in a second step, the input to climate metric formulas describing the global climate impact of the mission at each time-region grid point. The result of the modelling chain comprises a four dimensional dataset in space and time, which we call climate cost functions, and which describe at each grid point and each point in time, the global climate impact of an emission. In a third step, these climate cost functions are used in an air traffic simulator (SAAM), coupled to an emission tool (AEM) to optimise aircraft trajectories for the North Atlantic region. Here, we describe the details of this new modelling approach and show some example results. A number of sensitivity analyses are performed to motivate the settings of individual parameters. A stepwise sanity check of the results of the modelling chain is undertaken to demonstrate the plausibility of the climate cost functions
    corecore