9 research outputs found
PARV4 found in wild chimpanzee faeces - alternate route of transmission?
Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive nonhuman primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single wild Pan troglodytes schweinfurthii sample tested positive. Full genome analysis, as well as single ORF phylogenies, confirmed species-specific PARV4 infection
Functional magnetic resonance imaging (fMRI) of attention processes in presumed obligate carriers of schizophrenia: preliminary findings
<p>Abstract</p> <p>Background</p> <p>Presumed obligate carriers (POCs) are the first-degree relatives of people with schizophrenia who, although do not exhibit the disorder, are in direct lineage of it. Thus, this subpopulation of first-degree relatives could provide very important information with regard to the investigation of endophenotypes for schizophrenia that could clarify the often contradictory findings in schizophrenia high-risk populations. To date, despite the extant literature on schizophrenia endophenotypes, we are only aware of one other study that examined the neural mechanisms that underlie cognitive abnormalities in this group. The aim of this study was to investigate whether a more homogeneous group of relatives, such as POCs, have neural abnormalities that may be related to schizophrenia.</p> <p>Methods</p> <p>We used functional magnetic resonance imaging (fMRI) to collect blood oxygenated level dependent (BOLD) response data in six POCs and eight unrelated healthy controls while performing under conditions of sustained, selective and divided attention.</p> <p>Results</p> <p>The POCs indicated alterations in a widely distributed network of regions involved in attention processes, such as the prefrontal and temporal (including the parahippocampal gyrus) cortices, in addition to the anterior cingulate gyrus. More specifically, a general reduction in BOLD response was found in these areas compared to the healthy participants during attention processes.</p> <p>Conclusion</p> <p>These preliminary findings of decreased activity in POCs indicate that this more homogeneous population of unaffected relatives share similar neural abnormalities with people with schizophrenia, suggesting that reduced BOLD activity in the attention network may be an intermediate marker for schizophrenia.</p
Seasonal and inter-annual variation of malaria parasite detection in wild chimpanzees
Background Cross-sectional surveys of chimpanzee (Pan troglodytes) communities across sub-Saharan Africa show large geographical variation in malaria parasite (Plasmodium spp.) prevalence. The drivers leading to this apparent spatial heterogeneity may also be temporally dynamic but data on prevalence variation over time are missing for wild great apes. This study aims to fill this fundamental gap. Methods Some 681 faecal samples were collected from 48 individuals of a group of habituated chimpanzees (Taï National Park, Côte d’Ivoire) across four non-consecutive sampling periods between 2005 and 2015. Results Overall, 89 samples (13%) were PCR-positive for malaria parasite DNA. The proportion of positive samples ranged from 0 to 43% per month and 4 to 27% per sampling period. Generalized Linear Mixed Models detected significant seasonal and inter-annual variation, with seasonal increases during the wet seasons and apparently stochastic inter-annual variation. Younger individuals were also significantly more likely to test positive. Conclusions These results highlight strong temporal fluctuations of malaria parasite detection rates in wild chimpanzees. They suggest that the identification of other drivers of malaria parasite prevalence will require longitudinal approaches and caution against purely cross-sectional studies, which may oversimplify the dynamics of this host-parasite system