12 research outputs found

    Hepatitis B virus genotypes/subgenotypes in voluntary blood donors in Makassar, South Sulawesi, Indonesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) genotype appears to show varying geographic distribution. Molecular epidemiological study of HBV in particular areas in Indonesia is still limited. This study was aimed to identify the prevalence of HBV genotype/subgenotype and mutations in basal core promoter (BCP) region in voluntary blood donors in Makassar, one of the biggest cities in east part of Indonesia.</p> <p>A total of 214 hepatitis B surface antigen (HBsAg)-positive samples were enrolled in this study. HBV genotype/subgenotype was identified by genotype-specific PCR method or direct sequencing of pre-S region. Mutations in BCP were identified by direct sequencing of the corresponding region.</p> <p>Results</p> <p>HBV/B and HBV/C were detected in 61.21% and 25.23% of the samples, while mix of HBV/B and HBV/C was found in 12.62% of the samples. Based on pre-S region, among HBV/B and HBV/C, HBV/B3 (95.00%) and HBV/C1 (58.82%) were predominant. Interestingly, HBV/D was identified in two samples (22.165.07 and 22.252.07). Complete genome sequences of two HBV/D strains (22.165.07 and 22.252.07) demonstrated that both strains belong to HBV/D6, and the divergence between the two strains were 1.45%, while divergences of both 22.165.07 and 22.252.07 strains with reference strain (<ext-link ext-link-id="AM422939" ext-link-type="gen">AM422939</ext-link>/France) were 2.67%. A1762T/G1764A mutation was observed in 1.96% and 5.36%, whereas T1753V mutation was found in 2.94% and 1.79% of HBV/B and HBV/C, respectively.</p> <p>Conclusion</p> <p>HBV/B and HBV/C are dominant in Makassar, similar to most areas in Indonesia. Mutations in BCP which might be associated with severity of liver disease are less common.</p

    Sequence Heterogeneity in NS5A of Hepatitis C Virus Genotypes 2a and 2b and Clinical Outcome of Pegylated-Interferon/Ribavirin Therapy

    Get PDF
    Pegylated-interferon plus ribavirin (PEG-IFN/RBV) therapy is a current standard treatment for chronic hepatitis C. We previously reported that the viral sequence heterogeneity of part of NS5A, referred to as the IFN/RBV resistance-determining region (IRRDR), and a mutation at position 70 of the core protein of hepatitis C virus genotype 1b (HCV-1b) are significantly correlated with the outcome of PEG-IFN/RBV treatment. Here, we aimed to investigate the impact of viral genetic variations within the NS5A and core regions of other genotypes, HCV-2a and HCV-2b, on PEG-IFN/RBV treatment outcome. Pretreatment sequences of NS5A and core regions were analyzed in 112 patients infected with HCV-2a or HCV-2b, who were treated with PEG-IFN/RBV for 24 weeks and followed up for another 24 weeks. The results demonstrated that HCV-2a isolates with 4 or more mutations in IRRDR (IRRDR[2a]≥4) was significantly associated with rapid virological response at week 4 (RVR) and sustained virological response (SVR). Also, another region of NS5A that corresponds to part of the IFN sensitivity-determining region (ISDR) plus its carboxy-flanking region, which we referred to as ISDR/+C[2a], was significantly associated with SVR in patients infected with HCV-2a. Multivariate analysis revealed that IRRDR[2a]≥4 was the only independent predictive factor for SVR. As for HCV-2b infection, an N-terminal half of IRRDR having two or more mutations (IRRDR[2b]/N≥2) was significantly associated with RVR, but not with SVR. No significant correlation was observed between core protein polymorphism and PEG-IFN/RBV treatment outcome in HCV-2a or HCV-2b infection. Conclusion: The present results suggest that sequence heterogeneity of NS5A of HCV-2a (IRRDR[2a]≥4 and ISDR/+C[2a]), and that of HCV-2b (IRRDR[2b]/N≥2) to a lesser extent, is involved in determining the viral sensitivity to PEG-IFN/RBV therapy

    Virologic and clinical characteristics of HBV genotypes/subgenotypes in 487 Chinese pediatric patients with CHB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of hepatitis B virus (HBV) genotypes/subgenotypes with clinical characteristics is increasingly recognized. However, the virologic and clinical features of HBV genotypes/subgenotypes in pediatric patients remain largely unknown.</p> <p>Methods</p> <p>Four hundred and eighty-seven pediatric inpatients with CHB were investigated, including 217 nucleos(t)ide analog-experienced patients. HBV genotypes/subgenotypes and reverse transcriptase (RT) mutations were determined by direct sequencing. The stage of fibrosis and degree of inflammatory activity were evaluated by the Metavir score system.</p> <p>Results</p> <p>Among 487 enrolled pediatric patients, HBV genotype C2 and B2 were the most two prevalent (73.7% and 21.1%). Comparing with HBV/B2 infected patients, no significant difference was observed in the incidence rate and mutant patterns of lamivudine- or adefovir-resistant mutations in HBV/C2 infected patients (<it>P </it>> 0.05). Importantly, we found that the degree of hepatic inflammation degree, fibrosis stage and ALT level were significantly higher in HBV/C2-infected HBeAg positive patients than it was in HBV/B2-infected ones.</p> <p>Conclusions</p> <p>The pediatric patients with HBV/C2 infection might be more susceptible to develop severe liver pathogenesis.</p

    Spatial and Temporal Dynamics of Hepatitis B Virus D Genotype in Europe and the Mediterranean Basin

    Get PDF
    Hepatitis B virus genotype D can be found in many parts of the world and is the most prevalent strain in south-eastern Europe, the Mediterranean Basin, the Middle East, and the Indian sub-continent. The epidemiological history of the D genotype and its subgenotypes is still obscure because of the scarcity of appropriate studies. We retrieved from public databases a total of 312 gene P sequences of HBV genotype D isolated in various countries throughout the world, and reconstructed the spatio-temporal evolutionary dynamics of the HBV-D epidemic using a Bayesian framework

    Genetic variability of hepatitis C virus before and after combined therapy of interferon plus ribavirin

    Get PDF
    We present an analysis of the selective forces acting on two hepatitis C virus genome regions previously postulated to be involved in the viral response to combined antiviral therapy. One includes the three hypervariable regions in the envelope E2 glycoprotein, and the other encompasses the PKR binding domain and the V3 domain in the NS5A region. We used a cohort of 22 non-responder patients to combined therapy (interferon alpha-2a plus ribavirin) for which samples were obtained before initiation of therapy and after 6 or/and 12 months of treatment. A range of 25-100 clones per patient, genome region and time sample were sequenced. These were used to detect general patterns of adaptation, to identify particular adaptation mechanisms and to analyze the patterns of evolutionary change in both genome regions. These analyses failed to detect a common adaptive mechanism for the lack of response to antiviral treatment in these patients. On the contrary, a wide range of situations were observed, from patients showing no positively selected sites to others with many, and with completely different topologies in the reconstructed phylogenetic trees. Altogether, these results suggest that viral strategies to evade selection pressure from the immune system and antiviral therapies do not result from a single mechanism and they are likely based on a range of different alternatives, in which several different changes, or their combination, along the HCV genome confer viruses the ability to overcome strong selective [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]

    The familial dementia gene revisited: a missense mutation revealed by whole exome sequencing identifies ITM2B as a candidate gene underlying a novel autosomal dominant retinal dystrophy in a large family

    No full text
    Audo, Isabelle et al.Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ß precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.The project was supported by GIS-maladies rares (C.Z.), Retina France (part of the 100-Exome Project) (I.A., J.-A.S. and C.Z.), Foundation Voir et Entendre (C.Z.), Foundation Fighting Blindness (FFB) grant CD-CL-0808-0466-CHNO (I.A. and the CIC503, recognized as an FFB centre), FFB grant C-CMM-0907-0428-INSERM04, Ville de Paris and Region Ile de France and by the French State programme ‘Investissements d’Avenir’ managed by the Agence Nationale de la Recherche (LIFESENSES: ANR-10-LABX-65)Peer Reviewe
    corecore