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Abstract

We present an analysis of the selective forces acting on two hepatitis C virus genome regions previously postulated to be
involved in the viral response to combined antiviral therapy. One includes the three hypervariable regions in the envelope
E2 glycoprotein, and the other encompasses the PKR binding domain and the V3 domain in the NS5A region. We used a
cohort of 22 non-responder patients to combined therapy (interferon alpha-2a plus ribavirin) for which samples were
obtained before initiation of therapy and after 6 or/and 12 months of treatment. A range of 25–100 clones per patient,
genome region and time sample were sequenced. These were used to detect general patterns of adaptation, to identify
particular adaptation mechanisms and to analyze the patterns of evolutionary change in both genome regions. These
analyses failed to detect a common adaptive mechanism for the lack of response to antiviral treatment in these patients. On
the contrary, a wide range of situations were observed, from patients showing no positively selected sites to others with
many, and with completely different topologies in the reconstructed phylogenetic trees. Altogether, these results suggest
that viral strategies to evade selection pressure from the immune system and antiviral therapies do not result from a single
mechanism and they are likely based on a range of different alternatives, in which several different changes, or their
combination, along the HCV genome confer viruses the ability to overcome strong selective pressures.
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Introduction

The hepatitis C virus (HCV) infects approximately 170 million

people worldwide and it establishes persistent infection in more

than two-thirds of those who contract it [1,2]. The current

standard treatment for patients infected with HCV consists of a

combined therapy of interferon plus ribavirin, which is successful

in approximately 40% of the patients [3,4]. Recently, randomised

controlled clinical trials have shown that pegylated interferon and

ribavirin yield a higher rate of sustained virological response [5,6].

Moreover, response to anti-HCV therapy varies depending on the

viral genotype. Patients infected with HCV genotypes 1 or 4 show

significantly lower sustained response rates than those infected

with genotypes 2 or 3 [6–9].

Studies trying to find differential patterns in the HCV genome

in response to pressure from the immune system or resistance to

antiviral treatment have mainly focused on those regions

seemingly involved in evasion mechanisms and, in consequence,

supposed to be subjected to strong selective pressures. The highest

levels of sequence variation, i.e. the highest genetic plasticity, are

concentrated in the four hypervariable regions of HCV, three of

which are located in the envelope E2 glycoprotein. Hypervariable

region 1 (HVR1) consists of a 27 amino acid sequence located at

the N-terminus of the protein [10,11] and seems to be involved in

target-cell recognition and virus attachment [12]. Hypervariable

region 2 (HVR2) consists of 9 amino acids located downstream of

HVR1 [11] and it has been hypothesized to be involved in cell

surface receptor binding [13]. Recently, a third hypervariable

region, denoted HVR3 [14,15], has been described in the E2

protein, and it is located between the two others. This region could

play a role in the process of binding to host cell receptors and virus

entry into host cells [14]. Finally, a fourth highly variable domain

(V3), spanning 24 amino acids, is located at the C-terminus of the

NS5A protein and appears to be involved in responsiveness to

interferon [16,17]. Close to this domain there is another important

region in the NS5A protein, the protein kinase-R binding domain

(PKR-BD), which consists of 66 amino acids and includes a 40

amino acid domain, the putative interferon sensitivity determining

region (ISDR). These domains interact with PKR, which is

involved in the cellular antiviral response induced by interferon,

thus blocking its antiviral activity [18,19].

HCV infections show two main features: high persistence and

low susceptibility to antiviral treatments. The high levels of genetic

variability of HCV are seemingly involved in viral escape from the
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host immune response, usually leading to chronic disease [20,21].

The selective pressures exerted by the immune system [22,23]

correlate with the degree of genetic variability in the target regions

[24]. This is the case for HVR1, which has been studied

extensively [21,25–28]. Moreover, the genetic variability of other

regions such as the ISDR [29,30] or the V3 domains [16,17] has

also been studied. However, no conclusive results have been

attained in any case, probably due to the establishment of complex

interactions between the genetic diversity of the virus and the host

immune response [31–34].

In this study we have employed several analytical procedures to

find differential selection patterns in a cohort of non-responder

patients during their treatment with interferon alpha-2a plus

ribavirin. For this, we employed 22 patients infected with HCV

genotype 1 (7 with subtype 1a and 15 with subtype 1b), for which a

sample immediately previous to initiation of antiviral treatment

was available (T0), and additional samples after 6 or/and 12

months of treatment (T1 and T2, respectively), when their lack of

response was established, were also available. Two viral genome

regions were analyzed. About 100 clone sequences per patient

were obtained from the E1-E2 region (4690 sequences in total),

which included all hypervariable regions; additionally, between 25

and 96 sequences were obtained for the NS5A (2486 sequences in

total), including the ISDR and V3 domains.

Results

Changes in nucleotide diversity during treatment
Nucleotide diversity was very high in the E1-E2 region (details

of individual samples and different genetic variability estimates can

be found in Table S1), although we found a few highly

homogeneous samples (Table 1). A small positive correlation

between nucleotide diversity estimates at the two time points

(r = 0.218, P,0.01) was observed and the average values were

almost identical (p= 0.025560.0031 for T0 samples and

p= 0.023860.0033 for T1/T2 samples, Table 1). Differences in

nucleotide diversity between T1/T2 and T0 samples were

computed to analyze the change in diversity during treatment

(Figure 1). Significant differences were detected in most cases (20/

24) using t-tests. A significant increase in nucleotide diversity was

detected in 13 cases, a significant decrease in 9 cases and no

significant differences were found in 4 cases. Consequently, a slight

tendency for nucleotide diversity to increase during treatment was

detected for the E1-E2 region.

In most patients we detected a significant divergence between

sequences sampled before and after treatment. The corresponding

nucleotide divergence statistics (Da), using Jukes-Cantor correc-

tion, are shown in Table 1. The range of Da values spanned from

0.0737 to 0.0002, with an average value of 0.0211 (0.0171 and

0.0231 for subtypes 1a and 1b, respectively). This is an indication

that there are very different patterns of differentiation between

sequences sampled at different times from the same patient, with a

slightly larger effect for patients infected with HCV subtype 1b

than subtype 1a (see below and supplementary Figures S1 and S2).

As expected, genetic variability was lower for the NS5A region

than for the E1-E2 region (Table 1). A marginally significant

correlation was found for nucleotide diversity between T0 and

T1/T2 samples from each patient (r = 0.396, P = 0.056). Again,

the average nucleotide diversities for the two sets of samples were

almost identical (p = 0.012860.0089 for T0 samples and

p = 0.012760.0098 for T1/T2 samples, Table 1). Variation in

nucleotide diversity during treatment was evaluated by computing

the difference between T1/T2 and T0 samples (Figure 1) for each

patient and using t-tests. Significant increases in nucleotide

diversity were detected in 8 cases, significant decreases in other

8 cases, and no significant differences in the remaining 8 cases.

Therefore, the NS5A region did not present any trend in

nucleotide diversity variation during treatment.

Similarly to the E1-E2 region, we detected a significant

divergence between sequences sampled before and after treatment

in most patients (Table 1, Figure 1). The range of Da values spanned

from 0.0356 to 0.0001, with an average value of 0.0081 (0.0039 and

0.0103 for subtypes 1a and 1b, respectively). As for the E1-E2

region, these estimates indicate that there are very different patterns

of differentiation between sequences sampled at different times from

the same patient, with a wider range of variation for patients

infected with HCV subtype 1b than for those infected with subtype

1a (see below and supplementary Figures S1 and S2).

For T0 samples, a significant correlation was detected between

the nucleotide diversity levels of E1-E2 and NS5A regions

(r = 0.604, P,0.002). However, no significant correlation was

observed for T1/T2 samples (r = 0.092, P = 0.668). These results

indicate that the levels of genetic variability between both regions

were closely related before initiation of treatment, but the

correlation had disappeared after it was discontinued.

Table 1. Evolution of genetic variation within each patient
during time for the E1-E2 and NS5A regions.

Patient E1-E2 Region NS5A Region

p (T0) p (T1/T2) Da (JC) p (T0) p (T1/T2) Da (JC)

A09 0.0123 0.0274 0.0622 0.0123 0.0212 0.0070

A20 0.0240 0.0315 0.0014 0.0097 0.0028 0.0009

A21 0.0386 0.0644 0.0128 0.0029 0.0024 0.0009

A34 0.0292 0.0284 0.0001 0.0133 0.0184 0.0005

A35 0.0117 0.0189 0.0019 0.0061 0.0121 0.0001

C05 0.0468 0.0252 0.0212 0.0102 0.0240 0.0110

C08 0.0460 0.0037 0.0444 0.0187 0.0010 0.0127

C12 0.0248 0.0321 0.0304 0.0147 0.0138 0.0221

C16 0.0251 0.0482 0.0290 0.0116 0.0252 0.0083

C17 0.0079 0.0029 0.0185 0.0007 0.0000 0.0027

C22/T1 0.0431 0.0134 0.0226 0.0186 0.0067 0.0074

C22/T2 0.0431 0.0204 0.0197 0.0186 0.0093 0.0067

C29 0.0328 0.0043 0.0634 0.0297 0.0040 0.0356

C37 0.0084 0.0128 0.0008 0.0084 0.0122 0.0012

G06 0.0286 0.0230 0.0010 0.0262 0.0271 0.0011

G07 0.0398 0.0077 0.0369 0.0362 0.0386 0.0020

G14 0.0255 0.0226 0.0038 0.0108 0.0135 0.0008

G16 0.0000 0.0313 0.0737 0.0000 0.0230 0.0209

G17 0.0507 0.0532 0.0013 0.0154 0.0051 0.0087

G18 0.0314 0.0101 0.0318 0.0152 0.0102 0.0123

G19 0.0276 0.0425 0.0082 0.0106 0.0092 0.0050

G22 0.0146 0.0287 0.0086 0.0124 0.0159 0.0027

G26/T1 0.0003 0.0005 0.0085 0.0001 0.0005 0.0149

G26/T2 0.0003 0.0177 0.0032

The nucleotide diversities (p) at the initial and final sampling times and the net
nucleotide differentiation (Da, with Jukes-Cantor correction) are reported. For
two patients, C22 and G26, the values of an intermediate sample (at T1) are also
reported. (SD: standard deviation). Values from three different time samples are
reported for two patients (C22 and G26) at the E1-E2 region and for one patient
(C22) at the NS5A region.
doi:10.1371/journal.pone.0003058.t001
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We observed a significant correlation (r = 0.521, P,0.01)

between the differences in nucleotide diversity at T0 and T1/T2

in the two genome regions analyzed in each patient. Only two

patients (A20 and A35) presented significant changes of opposite

sign in the two estimates, with diversity increasing during

treatment in one region and decreasing in the other (Figure 1).

Hence, there is evidence for nucleotide diversity being affected

similarly by antiviral treatment in both genome regions, with only

a few cases in which the two regions changed differently, at least in

levels of nucleotide diversity, to treatment.

Patterns and rates of evolution in the E1-E2 and NS5A
regions before and after antiviral treatment

We obtained maximum likelihood phylogenetic trees for all the

sequence clones of each genome region from each patient using a

common outgroup sequence, HCV-H77 (accession number

NC_004102) for sequences of subtype 1a and HCV-J (accession

D10749) for those of subtype 1b. The most remarkable feature from

the analysis of these 44 trees was the absence of a common pattern

for the relationship between clones derived before and after antiviral

treatment (all trees for E1-E2 and NS5A regions are shown in the

supplementary material, Figures S1 and S2). In the E1-E2 region,

for instance, T0 and T2 samples from patient G07 were grouped in

separate clusters, with all T2 samples clustering in a monophyletic

group derived from one unidentified variant already present at time

T0 (Figure 2a). On the contrary, for this same region clones from

the two time samples from patient A34 were completely mixed, with

no differentiation between T0 and T1 sequences (Figure 2b).

Intermediate patterns were present in other patients for this region

(Figure S1). The same observation applied to the NS5A region

where, for instance, patient C12 showed a perfect separation in

different clusters of sequences obtained at each time sample whereas

patient G06 presented a very heterogeneous structure (Figure 2c, d).

Again, a range of intermediate and similarly extreme patterns were

found in other patients (Figure S2).

Inspection of the phylogenetic trees from both genome regions

confirmed the previous results of nucleotide diversity analyses.

Despite being characterized by a common phenotype, lack of

response to interferon plus ribavirin treatment, hepatitis C virus

from these patients presented a wide range of evolutionary

patterns and levels of genetic diversity, before and after antiviral

treatment. For instance, some patients showed low levels of genetic

variability at the T0 sample and higher levels at T1/T2 samples,

and vice versa (Figures S1 and S2). Globally, these results suggest

that HCV populations use different strategies to adapt to and

overcome the antiviral effects of interferon and ribavirin used in

the treatment of these different patients.

To further characterize in a more quantitative manner the

different adaptive strategies to antiviral treatment used by hepatitis

C virus, we analyzed the amount of viral evolution within each

infected patient in the two genome regions considered. For this, we

analyzed the ML trees described above using common, epidemi-

ologically unrelated outgroup sequences, H77 for subtype 1a

sequences and HCV-J for subtype 1b.

As a proxy for the amount of evolution before and after antiviral

treatment we computed the average length from the common

Figure 1. Graphic representation of the differences in nucleotide diversity between final versus initial time samples for the E1-E2
and NS5A regions (denoted as black and white dots, respectively). Three time samples were obtained for patients C22 (for E1-E2 and NS5A
regions) and G26 (for E1-E2 region) and, consequently, differences between these three time samples are represented. Non-significant differences are
indicated with an asterisk.
doi:10.1371/journal.pone.0003058.g001
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ancestor to each tip for the different clones of each patient at both

genome regions. In line with previous analyses, an enormous

heterogeneity was observed for the cohort of patients in both

regions (Figure 3). For the E1-E2 region, 17 out of 22 patients

presented an increase of the genetic distance to the common

ancestor during treatment, whereas the same happened for 14 out

of 22 patients for the NS5A region. Despite this trend of increasing

genetic distance from the origin after treatment, only 10 of the 22

patients showed a simultaneous increase in both regions, whereas

the evolutionary distance decreased in both regions for only one

patient. Contrary to the previous observation of lack of correlation

between divergence before and after infection of each patient, we

Figure 2. Examples of phylogenetic trees from the E1-E2 and NS5A regions. Trees from patients G07 (a) and A34 (b) are shown for the E1-E2
region, whereas trees from patients C12 and G06 are presented for the NS5A region. Red, green, and blue dots denote sequences from T0, T1, and T2,
respectively.
doi:10.1371/journal.pone.0003058.g002
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observed significant correlations between genetic distances from

the common origin before and after antiviral treatment within

each patient (r = 0.487, P = 0.011 for the E1-E2 region; r = 0.754,

P,0.001 for the NS5A region). However, the relationship between

genetic distance from origin before treatment and its relative

change after it was the opposite one. Correlations between genetic

distances at T0 and (T1/T22T0) were negative and marginally

significant for both genome regions (r = 20.407, P = 0.030, for E1-

E2, and r = 20.303, P = 0.087 for NS5A). Finally, relative changes

in both regions within patients were not correlated to each other

(r = 0.080, P = 0.639) nor to the number of sites detected to evolve

under positive selection (r = 0.328, P.0.10, for E1E2; r = 0.117,

P.0.10, for NS5A).

These results provide further evidence for evolution taking place

not only at different paces in the two genome regions considered –

most values for the E1-E2 region were located in the range 0.04–

Figure 3. Mean genetic distances from the common ancestor of the sequences from the E1-E2 (a) and NS5A (b) regions for the
different time samples for each of the 22 analyzed patients. Black dots, white dots and black triangles correspond to T0, T1 and T2 estimates,
respectively.
doi:10.1371/journal.pone.0003058.g003
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0.10, whereas for the NS5A region most values were contained in

the range 0.01–0.04 – but also more or less independently in each

of them.

Evolutionary changes during antiviral treatment in the
E1-E2 region

The nature of the differences at the nucleotide level between

viral populations sampled at different times during antiviral

treatment within each patient was further investigated at the

amino acid level. Firstly, we analyzed the differences in amino acid

composition in each position between different samples for each

patient. A summary of the significant differences found is shown in

Supplementary Table S3. Almost half (71/154) of the positions

were detected to vary significantly in composition in at least one

patient. The tallying of positions with significant changes per

patient also revealed a very uneven distribution, with a maximum

of 29 positions (in patient G16) to a minimum of none found in

two subtype 1a (A20 and A34) and two subtype 1b-infected

patients (C37 and G17). There were no significant differences in

the number of such positions detected between the two viral

subtypes (average numbers were 12.5 for subtype 1a, 13.5 for 1b

and 13.2 for the whole data set).

As with genetic diversity at the nucleotide level, the distribution

of significantly changing positions was not homogenous along the

analyzed genome fragment (Figure 4a). For the E1-E2 region six

sub-regions were defined, the three hypervariable regions

described in this portion of the HCV genome (HVR1, HVR2

and HVR3) and the three intervening regions, the first one

corresponding to the C-terminus of the E1 envelope protein

coding gene and the two others already described in the E2

protein coding gene. In the 56 aa fragment corresponding to the

E1 glycoprotein, significant changes were identified in only 11

positions, or 19.6% of the region (Table 2). Most of these positions

were found to vary in a single patient (Figure 4a). In contrast, for

the region corresponding to the E2 glycoprotein a high proportion

of the positions were identified as variable in this analysis (59 of

101, 58.4%). These positions were mainly localized in the HVR1

region (92.6% of its positions differed significantly between the two

time samples in at least one patient), the HVR2 (55.6%) and the

HVR3 (64.7%). Furthermore, most positions identified as variable

Figure 4. Positions with significant amino acid change and under positive selection for the E1-E2 (a and b, respectively) and for the
NS5A region (c and d, respectively). Hypervariable regions for the E1-E2 region and ISDR, PKR-BD and V3 domain for the NS5A region are
indicated.
doi:10.1371/journal.pone.0003058.g004
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in these three regions were found in several patients simulta-

neously (Figure 4a).

We next analyzed whether these changes in amino acid

composition resulted from positive selection acting at the codon level

or whether they could be explained by other factors. In 20 of the 22

patients the most likely evolutionary model for sequences sampled at

two different time points (before and at the end of the viral treatment)

incorporated a class of sites for which v= Ka/Ks.1 and, in

consequence, it was possible to apply the Bayes Empirical Bayes

(BEB) procedure to identify those amino acid positions most likely

under positive selection. The two exceptions corresponded to subtype

1b-infected patients, C29 and G22. Interestingly, whereas patient

C29 showed significant change in 25 positions in the composition

analysis, the four patients in which no such positions were found

(patients A20, A34, C37 and G17) were all identified to evolve under

the model incorporating positive selection.

Among the 20 patients for which the virus was estimated to

evolve under a model incorporating positive selection, the BEB

procedure identified 17 patients in which at least one codon had

evolved under positive selection with a posterior probability .0.95.

The number of such positions ranged between 1 (patient A21) and

26 (C08) (Table 3). Most positions evolving under positive selection

in at least one patient were concentrated in a few quite well

delimited regions (Tables 2 and 3 and Figure 4b). Many positively

selected sites were identified as such in one single patient (22 sites),

and only a few sites evolved under positive selection in 5 (4 sites), 6 (2

sites), 7 (1 site) and 8 (1 site) patients. Only three sites identified in

more than one patient (positions 8 and 87, 3 patients; position 126, 2

patients) fell outside the three regions described above.

Most, but not all, positions identified as evolving under positive

selection in at least one patient corresponded to sites whose amino

acid composition was found to be significantly different between

the two different sample points in each patient (Table 3 and Table

S3). The general distribution of these two kinds of sites was very

similar (Figures 4a and 4b), with a lower number of sites identified

to evolve under positive selection than changing in amino acid

composition during the antiviral treatment.

For each of the six regions considered, levels of synonymous (Ks)

and non-synonymous (Ka) substitutions were estimated for each

patient (data shown in Table S4). A wide range of Ks values, from 0 to

0.32 substitutions/site, was observed. Moreover, there were no clear

differences among the different regions considered. On the contrary,

Ka values also presented a wide distribution, ranging between 0 and

0.27 subst./site, but in this case clear differences were observed

among the six regions analyzed. Three different groups could be

distinguished: firstly, the HVR1 region (with values ranging between

0 and 0.26 subst./site) showed the highest values for Ka; secondly,

regions HVR2 and HVR3, with Ka values ranging from 0 to 0.1

subst./site, were characterized by similar and intermediate values of

Ka; and finally, a third group, comprising the three intervening

regions and with Ka values ranging from 0 to 0.05 subst./site, showed

the lowest values of Ka, very close to 0 in most cases.

The analysis of the changes in synonymous and non-synonymous

substitutions between different samples from the same patient in the

six sub-regions considered in the E1-E2 region allowed a better

appreciation of the evolutionary processes involved in the virus

response during treatment (Table S5). Globally, a general increase in

the amount of synonymous substitutions was observed for the six sub-

regions considered, ranging from 8% to 117%. This might be

attributed to the mutagenic effect of ribavirin [59]. A more detailed

examination of these results and those of changes in the Ka/Ks ratios

revealed substantial variability in this response. Some patients showed

increased levels of Ks after antiviral treatment in all, or most, sub-

regions considered, but in others the pattern was the opposite one,

with fewer synonymous mutations after treatment than before it

(Table S5). Furthermore, in all but one case (patient G26) in which a

significant number of positively selected sites were detected (Table 3)

the pattern of change in Ks and Ka/Ks corresponded to a reduction

in both parameters. The corresponding phylogenetic trees revealed

highly monomorphic viral populations after treatment while those

before this was initiated were very variable (see trees corresponding to

patients A20, C08 and C17 in Supplementary Figure S1).

Interestingly, a general trend towards negative correlations was

found between DKs and the number of positively selected sites for

each sub-region, but there were too few data points to test its

significance reliably. This trend became marginally significant for

some sub-regions when considering the total number of codons

positively selected at the E1-E2 region (data not shown).

Evolutionary changes during antiviral treatment in the
NS5A region

We applied the same analyses previously described for the E1-

E2 region to the NS5A region, although considering its specific

Table 2. Summary of positions whose amino acid composition changes significantly during the treatment or detected to evolve
under positive selection in the E1-E2 and NS5A regions analyzed in 22 patients.

Positions identified to change in at least one patient

Region Sub-region Positions Na Composition Positive Selection

E1-E2 E1 1–56 56 11 (19.6%) 8 (14.3%)

HVR1 57–83 27 25 (92.6%) 18 (66.7%)

HVR3 107–123 17 11 (64.7%) 10 (58.8%)

HVR2 147–155 9 5 (55.6%) 7 (77.8%)

Remaining positions E2 protein 48 19 (39.6%) 8 (16.7%)

NS5A NS5A_1 1–70 70 5 (7.1%) 4 (5.7%)

PKR-BD ISDR 71–110 40 11 (27.5%) 6 (15.0%)

Rest 111–136 26 5 (19.2%) 5 (19.2%)

V3 domain 218–241 24 12 (50.0%) 10 (41.7%)

Remaining positions NS5A protein 87 16 (17.2%) 14 (16.1%)

(Na: number of amino acid positions in the corresponding region).
doi:10.1371/journal.pone.0003058.t002
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features. Fewer positions were detected to vary significantly in

composition in at least one patient in the NS5A region than in the

E1-E2 region. Changes were observed in 49 of the 247 positions

considered (19.8%), with an average of 4.5 patients per position.

Again, the distribution of positions per patient was extremely

uneven (Table S6), with a maximum of 22 positions (in patient

C29) to a minimum of none, found in two subtype 1a patients

(A34 and C17) and four of subtype 1b (A35, G06, G07 and G22).

There were no significant differences in the number of such

positions detected between the two viral subtypes (average

numbers were 1.25 for subtype 1a, 4.44 for subtype 1b and 3.38

for the whole set).

The distribution of significantly changing positions was not

homogeneous along the analyzed NS5A region, although to a

lower extent than for the E1-E2 region (Figure 4c, Table 2). For

the NS5A region we considered five different sub-regions:

NS5A_1, ISDR, Rest of PKR-BD, NS5A_2, and the V3 domain.

In the 70 amino acid fragment corresponding to the NS5A_1

region significant changes were identified in only 5 positions

(7.1%), and all but one were detected in a single patient. For the

PKR-BD, most variable positions were detected in the ISDR (11

of 40, 27.5%), when compared with the remaining positions within

the PKR-BD (5 of 26, 19.2%). Remarkably, the highest proportion

of variable positions was detected in the V3 domain (12 of 24,

50%), where most positions identified as variable were found in

several patients simultaneously.

The best evolutionary model for sequences derived from each

patient included a class allowing for positively selected codons

(v.1) in 18 of the 22 analyzed patients (Table 3). The four

exceptions corresponded to subtype 1a-infected patients A20 and

C17 and subtype 1b-infected patients A35 and G26. Among the

18 patients in which the virus was estimated to evolve under a

model incorporating positive selection, in 15 of them we identified

at least one amino acid with a posterior probability .0.95 of

having evolved under positive selection, and the number of such

positions ranged between 1 (patient A09) and 9 (patient G16).

In contrast to the E1-E2 region, the distribution of sites evolving

under positive selection was relatively homogeneous (Tables 2 and 3

and Figure 4d). There were only two remarkable regions: the one

denoted as low variability region, which showed a very low number

of positively selected sites (4 of 70, 5.7%), and the V3 domain, which

showed the highest proportion of positively selected sites (10 of 24,

41.7%). The frequency of sites evolving under positive selection was

very similar between the PKR-BD and the remaining positions of

the NS5A region. In any case, it is also important to note that most

positively selected sites were detected in only one patient (24 of 39,

61.5%), 13 sites were detected in two patients (33.3%), and only two

sites were detected in three patients (5.1%). In analogy with the E1-

E2 region, most positions identified as evolving under positive

selection in at least one patient corresponded to sites whose amino

acid composition was found to be significantly different during

antiviral treatment (Figure 4c, d).

We observed a wide range of Ks values, ranging between 0 and

0.2 subst./site, but without clear differences among the different

regions considered. The distribution of Ka values was not as wide

as for the E1-E2 region, ranging between 0 and 0.05 subst./site,

but again in this case significant differences were observed among

the five regions analyzed. Three different groups could be

distinguished (Supplementary Table 7): firstly, the V3 domain

(with Ka = 0 to 0.05 subst./site) showed the highest values for Ka;

secondly, the regions termed Rest of PKR-BD and NS5A_2 (with

Ka = 0 to 0.02 subst./site) were characterized by similar and

intermediate values of Ka; and finally, a third group, comprising

the NS5A_1 and the ISDR, with Ka = 0 to 0.007 subst./site,

showed the lowest values of Ka, except for four cases at the ISDR

showing intermediate or even high Ka values.

A detailed analysis of the pattern of evolutionary changes in

each of the five sub-regions considered within NS5A (Supplemen-

tary Table S8) revealed a similar pattern to that observed in the

E1-E2 region, but with a general decrease in values for all

parameters. Overall, there was a small increase in the levels of

synonymous substitutions and a slight decrease in the change of

Ka/Ks before and after treatment. However, there was no clear

relationship between the direction of change in the levels of

synonymous substitutions and the detection of positively selected

codons (Table 3, Table S8), not even for the three patients with a

significantly larger number of such positions detected (C05, G16

and G19, with 8, 9, and 8 positions, respectively). Once again, the

corresponding phylogenetic trees showed markedly different

patterns with one patient, C05, presenting similarly variable,

non monophyletic groupings for sequences obtained before and

after treatment, another patient, G17, with a relatively more

monomorphic viral population after treatment, and yet another,

G06, with an almost monomorphic population at T0 replaced by a

highly variable one after antiviral therapy (Figure S2).

Discussion

Lack of response to antiviral treatment is presumably associated

with the ability of viral populations to escape from the deleterious

effects of the effective agent(s). For such apparently simple

organisms as viruses, the escape response depends on the existence

of resistance mutations at different genome locations. Tremendous

efforts have been devoted to identify which particular mutations are

responsible for HCV resistance to interferon and ribavirin, which

has resulted in the identification of several genome regions

presumably associated to viral escape but no specific variant(s) have

been found to consistently produce this phenotype. Nevertheless,

several reports, including our own, have described that the levels of

genetic diversity in different HCV genome regions correlate with

treatment failure, with higher variability levels before treatment in

isolates from non-responders than from responders [35–38].

In this work, we have observed a wide range of genetic variation

in non-responder patients in viral populations sampled before

initiation of antiviral therapy in the two genome regions analyzed,

E1-E2 and NS5A. Hence, genetic diversity in these regions does

not seem to be a good predictor of sustained viral response to

antiviral therapy, since all these patients were non-responders.

Furthermore, we have shown that there is not a single, common

pattern in the variation of the nucleotide diversity during the

antiviral treatment, especially in the NS5A region, although the

E1-E2 region presents a slight trend to increase genetic diversity

(Figure 1 and Tables 1 and 2). Therefore, our results show that

neither the genetic diversity level nor its rate or pattern of change

during treatment can be taken as predictors for the response to

antiviral treatment because they are different for different patients

despite these showing the same outcome.

The absence of a common response to antiviral treatment in

these viral populations extends not only to genetic variability but

also to more general patterns of evolution. This is reflected in a

wide diversity of patterns in the phylogenetic trees derived for the

two genome regions from the viral sequences obtained before and

after treatment. Within-patient phylogenetic trees of the infecting

viruses presented from very homogeneous, highly differentiated

populations at the two sampling points, to cases in which both

constituted a single, highly variable population with no signs of

differentiation between the two samples. All intermediate

possibilities were also found, including cases with an almost
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monomorphic initial population which was transformed into a

highly variable one, to the reverse case.

This lack of a common pattern is also revealed by the detection

of positive selection in these two regions. Although most patients

presented positively selected sites at one or the other genome

region, no such sites were detected in patient A35. On average, the

number of such sites was higher in the E1-E2 than in the NS5A

region, but there was no correlation within patients (r = 20.0567,

P.0.10, Table 3). Patients with a large number of positively

selected sites in the E1-E2 region showed none (A20, G26) or few

(C08) such sites in the NS5A but patient C05, third in the ranking

of sites in E1-E2, was second in NS5A. The reverse is also true for

patients with most selected sites in the NS5A region.

These differences are likely reflecting the different role of the

two fragments analyzed. If we consider the distribution of changes

along the E1-E2 region, it is remarkable the high degree of

conservation of the first 56 amino acids, which correspond to the

C-terminus of the envelope 1 protein (Table 3 and Figure 4). This

fragment presents a hydrophobic region apparently involved in

multiple functions, such as the maintenance of E1 and E2 proteins

in the endoplasmic reticulum or the formation of heterodimers

between E1 and E2 proteins [39–41], suggesting its involvement in

the viral replication cycle and accounting for the high degree of

conservation detected therein. In contrast, the sequenced portion

of this region that encodes the E2 protein presents a higher level of

variability, mainly concentrated in the three hypervariable regions.

The highest number of changes has been found in the HVR1,

where most HCV antigenic sites have been reported [42,43].

Hypervariable regions HVR2 and HVR3, in which several

antigenic sites have been reported [13,44] also show high levels

of variability, although to a lower extent than HVR1. The recently

described HVR3 [14,15] shows a slightly lower variability than

HVR1 and HVR2, which correlates with a lower exposition of its

antigenic sites as inferred from structural models [13]. This pattern

is also reflected in the analysis of genetic divergences, which

showed the highest Ka for HVR1, intermediate levels for HVR2

and HVR3, and very low levels for the remaining sub-regions

included in this E1-E2 fragment (Table S4).

Levels of genetic variability in the NS5A region were lower than

in the E1-E2 fragment analyzed. The first 70 amino acids of the

NS5A region showed a high degree of conservation, whereas the

highest variability was found in the V3 domain, which has been

postulated to be involved in responsiveness to interferon [16,17,45]

and where a certain degree of variability has been described [46].

The remaining sub-regions in this fragment showed an intermediate

degree of variability. The analyses of genetic divergences further

corroborated these observations, showing the highest Ka for the V3

domain, the lowest values for the first 70 amino acids of the

fragment and the ISDR (with some exceptions), and intermediate Ka

values for the rest of the fragment (Table S7). On the whole, these

and other similar results [47] indicate that the NS5A protein is

subject to strong evolutionary restrictions, probably because of its

role in replication mechanisms [48,49]. Moreover, the low levels of

variability present in the PKR-BD, and more specifically in the

ISDR, are probably due to the existence of a specific sequence

involved in response to interferon [18,29,50,51].

A correlation in the number of amino acid changes between

both regions was observed for composition analysis but not for

positive selection analysis. This could reflect the presence of

different selective pressures acting on each region, and conse-

quently of hitchhiking phenomena. The absence of recombination

in HCV along with the enhanced selective pressures during

antiviral treatments would facilitate the presence of hitchhiking

selection [52,53], in which the regions under the strongest selective

pressures would drive the course of evolution in the rest of the

genome. In this situation, the level of linkage between regions

would depend on the time elapsed between the hitchhiking events

and the subsequent readjustment phenomena in the affected

regions. Although the high mutation rates in the HCV genome

will certainly complicate these analyses, the role of hitchhiking

selection in the evolution of HCV deserves a closer scrutiny.

Genetic variability, amino acid composition and positive selection

analyses reflect the enormous heterogeneity of adaptive solutions

shown by viral populations infecting each patient. These results are

further corroborated by the phylogenetic analyses, where the

diversity of tree structures in the pool of patients for both analyzed

regions is remarkable, thus precluding to discern general patterns of

viral adaptation. Additionally, the analysis of divergence is

consistent with the previous results, providing evidence for the

particular adaptation routes exhibited by each patient.

In agreement with our results, it has been previously shown that

the adaptive solutions adopted by RNA virus populations are

convergent to a certain extent [54]. However, although positions

detected to evolve under positive selection are mainly concentrated

in the hypervariable regions, there are too many of these so to

establish clear patterns of adaptation to the strong selective

pressures exerted by the immune system and antiviral drugs. At

this point, it is important to remark the difficulty in distinguishing

between changes due to selective pressures imposed by the

immune system from those specific to antiviral therapy.

The addition of ribavirin is likely to mask adaptive events even

further. The precise mechanism of action of ribavirin is not

completely understood [55] and different mechanisms have been

recently shown. It has been suggested that the anti-HCV effect of

ribavirin is partly mediated via the up-regulation of PKR activity

[56]. Alternatively, it has been proposed that ribavirin acts as an

RNA mutagen [57], in which case a possible mechanism for

resistance could depend on increasing replication fidelity by means

of the accumulation of mutations in the polymerase [58]. In fact, the

mutagenic effect of ribavirin has been confirmed very recently [59],

although this is still a controversial issue [60]. We have detected a

global increase in the levels of synonymous substitutions after failed

treatment, which could be due to the mutagenic effect of ribavirin.

However, as indicated above, there are cases in which the change is

in the opposite direction. But we have also found that the detection

of large numbers of positively selected sites in the E1-E2 region is

usually associated to a reduction in the level of synonymous

substitutions and to a less polymorphic viral population after

treatment. The most plausible interpretation for this is that the

stronger the selective pressures on viral population (imposed by

antiviral treatment and host immune response), the higher the initial

reduction in genetic variability. Alternatively, for those populations

with more positively selected sites, an increased fidelity of the

corresponding HCV polymerase could also account for the

observed reduction in the levels of synonymous substitutions. In

this respect, mutations in the NS5B protein, which is the RNA-

dependent RNA polymerase in HCV, could be under strong

selective pressure and, consequently, variation in other genome

regions, such as the hypervariable regions, could eventually become

a surrogate marker of these selection events. From this perspective,

future studies should also focus on the genetic analysis of the NS5B

protein and its potential correlation to sensitivity to ribavirin [61].

Materials and Methods

Patients and samples
Serum samples were obtained from 22 patients infected with

HCV genotype 1, seven of which were infected with subtype 1a

Therapy and Variation in HCV
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and 15 with subtype 1b. These patients were included in a

prospective study in which serum samples (T0 samples) were taken

immediately before they were subjected to a combined treatment

of pegylated interferon-2a plus ribavirin. After 6 or 12 months,

treatment was discontinued since viral load did not decrease more

than 2 logs and a second serum sample was obtained for analysis

(T1 and T2 samples for 6 and 12 months, respectively). In a few

cases, samples were available for both 6- and 12-months time

points. Samples were obtained in different hospitals from the

Comunidad Valenciana, Spain (Table 4). All patients provided

written consent to be included in the study which was approved by

the corresponding ethics committees of the institutions involved

(Hospital General de Valencia, Hospital Clı́nico Universitario de

Valencia and Hospital General de Alicante).

Two HCV genome regions were studied: one corresponded to a

472 nt fragment encompassing genes encoding proteins E1 and E2

(from nucleotide 1322 to 1793 in the HCV-J reference genome

sequence, accession number AF009606 [62], including the three

hypervariable regions HVR1, HVR2 and HVR3), and referred to

as E1-E2 region, and the other corresponding to a 743 nt

fragment from gene NS5A (nucleotides 6742 to 7484), including

the interferon sensitivity determining region (ISDR) and the V3

domain and referred to as NS5A region.

Experimental procedures
RNA extraction, reverse transcription, amplification, cloning

and sequencing, are described in detail in [63]. Briefly, after

viral RNA extraction (High Pure Viral RNA Kit; Roche),

reverse transcription reactions were performed with random

hexadeoxynucleotides in order to prevent any bias during

reactions due to unspecific oligonucleotides. Primers used for

subsequent PCR are detailed in [64]. Amplified DNA products

for each region were purified with High Pure PCR product

Purification Kit (Roche) and directly cloned into EcoRV-

digested pBluescript II SK (+) phagemid (Stratagene). Plasmid

DNA was purified with High Pure Plasmid Isolation Kit

(Roche). Cloned products for E1-E2 and NS5A regions were

sequenced using vector-based primers KS and SK (Stratagene).

For the E1-E2 region, we obtained about 100 clones from each

patient, yielding a total of 4690 sequences, 2232 from T0

samples, 1447 from T1 samples and 1011 from T2 samples. For

the NS5A region, we obtained between 25 and 96 clones per

sample and 2486 sequences in total were determined (see Table

S1 in Supplementary data). HCV sequences obtained in this

study have been deposited in GenBank with accession numbers

given in Tables S1 and S2.

Genetic variability analysis
Sequence alignments were obtained using CLUSTALX v1.81

[65]. DnaSP 3.51 [66] was used to estimate, for both E1-E2 and

NS5A regions, the following measures of genetic variability in the

viral samples of each patient: number of polymorphic sites (S),

total number of mutations (g), number of haplotypes (nHap) and

nucleotide diversity (p).

Table 4. Main features of HCV samples included in this study.

Hospital Patient identifier Available sera # of sequences (E1-E2) # of sequences (NS5A) HCV subtype

H1 A09 T0,T1 100, 114 32, 34 1a

A20 T0,T1 112, 98 67, 33 1a

A21 T0,T1 100, 108 49, 64 1b

A34 T0,T1 100, 112 29, 39 1a

A35 T0,T1 109, 113 27, 25 1b

H2 C05 T0,T1 100, 100 86, 43 1b

C08 T0,T2 100, 100 77, 76 1b

C12 T0,T2 100, 100 92, 71 1b

C16 T0,T2 101, 107 74, 74 1b

C17 T0,T2 106, 100 25, 85 1a

C22 T0,T1,T2 100, 100, 101 44, 25, 55 1a

C29 T0,T1 100, 100 87, 60 1b

C37 T0,T2 101, 100 42, 49 1b

H3 G06 T0,T1 100, 100 61, 43 1b

G07 T0,T2 100, 100 48, 49 1b

G14 T0,T1 100, 100 84, 86 1a

G16 T0,T1 103, 100 57, 47 1b

G17 T0,T1 101, 100 68, 29 1b

G18 T0,T2 100, 100 60, 71 1b

G19 T0,T2 100, 100 52, 56 1a

G22 T0,T1 100, 102 36, 49 1b

G26 T0,T1,T2* 100, 100, 102 84, 42 1b

Abbreviations: H1, Hospital General de Alicante; H2, Hospital Clı́nico de Valencia; H3, Hospital General de Valencia; T0, serum obtained before starting combined therapy
with interferon alpha plus ribavirin; T1, serum obtained six months after starting combined therapy with interferon alpha plus ribavirin; T2, serum obtained twelve
months after starting combined therapy with interferon alpha plus ribavirin.
*T2 sequences were not available for the NS5A region.
doi:10.1371/journal.pone.0003058.t004
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Synonymous (Ks) and nonsynonymous (Ka) substitutions
Synonymous (Ks) and nonsynonymous (Ka) substitution per

synonymous and nonsynonymous site, respectively, were estimated

for each patient from data derived from the corresponding T0

sample using the Nei-Gojobori method implemented in the

program MEGA [67]. Standard errors of Ks and Ka were obtained

by bootstrap resampling with 500 pseudoreplicates. According to

structural and functional properties, the 472-nt fragment of the

E1-E2 region was divided into six different sub-regions for Ks and

Ka estimation: the E1 sub-region, corresponding to E1 protein

(nucleotide positions 2 to 169, amino acid positions 1 to 56

[positions 328–383 in the HCV-J reference sequence]); the HVR1

(nucleotide positions 170 to 250, amino acid positions 57 to 83

[384–410]), the E2_1 sub-region, comprising nucleotide positions

251 to 319 (amino acid positions 84 to 106 [411–433]); the HVR3,

defined between nucleotide positions 320 to 370 (amino acid

positions 107 to 123 [434–450]); the E2_2 sub-region, comprising

nucleotide positions 371 to 439 (amino acid positions 124 to 146

[451–473]); and the HVR2 (positions 440 to 466 nt, 147 to 155

aa, [474–482]). Similarly, the NS5A region was subdivided into

five different sub-regions for Ks and Ka estimation: the NS5A_1

sub-region (nucleotide positions 3 to 212, amino acid positions 1 to

70 [2139–2208]); the ISDR (nucleotide positions 213 to 332,

amino acid positions 71 to 110 [2209–2248]); the rest of the PKR-

BD (nucleotide positions 333 to 410, amino acid positions 111 to

136 [2249–2274]); the NS5A_2 sub-region (nucleotide positions

411 to 653, amino acid positions 137 to 217 [2275–2355]); and the

V3 domain (nucleotide positions 654 to 725, amino acid positions

218 to 241 [2356–2379]). For both regions, Ks and Ka estimates

were obtained for each of the delimited sub-regions.

Changes in amino acid composition during treatment
For both regions, amino acid composition was determined for

each sample and the different sets of sequences corresponding to

each patient (T0 sample versus T1 or T2 sample) were compared

with program VESPA [68]. Tests for differences in the

composition at each amino acid position between the two time-

points were carried out by means of a G-test. Significance levels for

multiple comparisons were corrected by Bonferroni’s method.

Positively selected amino acid positions during the
treatment

For each patient, a maximum likelihood approach [69]

implemented in the PAML package 3.15 [70] was used to

investigate the presence of positively selected codons in the E1-E2

and NS5A regions. Two criteria were employed to assign the best

evolutionary model to each patient (independently for each

region): a likelihood ratio test (LRT), which compares the fit of

two nested models to the data [69]; and the Akaike information

criterion (AIC), which allows to perform comparisons between non

nested models [71]. For all patients and genome regions, six

models were compared with the PAML package: M0, M1, M2,

M3, M7 and M8. For models M2, M3 and M8, the existence of

positively selected codons is allowed as they incorporate a class of

codons for which v= Ka/Ks (ratio of non-synonymous and

synonymous substitution rates) can be .1. Therefore, whenever

one of these models explained the observed data significantly

better than the other corresponding alternative in which such a

class is not allowed, then the existence of positively selected codons

was inferred. Next, a Bayes empirical Bayes (BEB) procedure [72]

was applied to detect codons with a posterior probability of

belonging to the v.1 class larger than 0.95.

Phylogenetic trees and rates of molecular evolution
Maximum likelihood trees were constructed with PHYML [73]

using a common evolutionary model (GTR+I+G) and common

outgroup sequences, H77 (accession number NC_004102) for

subtype 1a sequences and HCV-J (accession number D90208) for

subtype 1b. These two outgroup isolates represent epidemiolog-

ically unrelated strains to those included in our study. HCV-H77

was isolated from an American patient in 1979 [74] and HCV-J

was derived from a Japanese patient in the late 1980’s [75]. Rates

of evolution for the different time samples of each patient were

estimated by removing the outgroup from each phylogenetic tree

and then computing the average length of the arms for all the

sequences from each time sample.

Supporting Information

Figure S1 Phylogenetic trees for the E1-E2 region from all 22

analyzed patients. Different symbols are used to denote sequences

sampled at T0 (red dots), T1 (green dots) and T2 (blue dots).

Found at: doi:10.1371/journal.pone.0003058.s001 (0.36 MB PPT)

Figure S2 Phylogenetic trees for the NS5A region Phylogenetic

trees for the NS5A region from all 22 analyzed patients. Different

symbols are used to denote sequences sampled at T0 (red dots), T1

(green dots) and T2 (blue dots).

Found at: doi:10.1371/journal.pone.0003058.s002 (0.37 MB PPT)

Table S1 Genetic variability measures in the E1-E2 region of

the HCV genome.

Found at: doi:10.1371/journal.pone.0003058.s003 (0.09 MB

DOC)

Table S2 Genetic variability measures in the NS5A region of the

HCV genome.

Found at: doi:10.1371/journal.pone.0003058.s004 (0.09 MB

DOC)

Table S3 Positions detected to change significantly in amino

acid composition between samples at T0 and T1/T2 for each

patient included in the study for the E1-E2 region.

Found at: doi:10.1371/journal.pone.0003058.s005 (0.26 MB

DOC)

Table S4 Synonymous and non-synonymous substitutions levels

in the six sub-regions of the E1-E2 region.

Found at: doi:10.1371/journal.pone.0003058.s006 (0.09 MB

DOC)

Table S5 Relative change in the levels of synonymous and non-

synonymous to synonymous substitutions in the six sub-regions of

the E1-E2 region.

Found at: doi:10.1371/journal.pone.0003058.s007 (0.09 MB

DOC)

Table S6 Positions detected to change significantly in amino

acid composition between samples at T0 and T1/T2 for each

patient included in the study for the NS5A region.

Found at: doi:10.1371/journal.pone.0003058.s008 (0.18 MB

DOC)

Table S7 Synonymous and non-synonymous substitutions levels

in the five sub-regions of the NS5A region.

Found at: doi:10.1371/journal.pone.0003058.s009 (0.08 MB

DOC)

Table S8 Relative change in the levels of synonymous and non-

synonymous to synonymous substitutions in the six sub-regions of

the E1-E2 region.
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