1,210 research outputs found

    Contemporary perspectives of core stability training for dynamic athletic performance: a survey of athletes, coaches, sports science and sports medicine practitioners.

    Get PDF
    BACKGROUND: Core stability training has grown in popularity over 25 years, initially for back pain prevention or therapy. Subsequently, it developed as a mode of exercise training for health, fitness and sport. The scientific basis for traditional core stability exercise has recently been questioned and challenged, especially in relation to dynamic athletic performance. Reviews have called for clarity on what constitutes anatomy and function of the core, especially in healthy and uninjured people. Clinical research suggests that traditional core stability training is inappropriate for development of fitness for heath and sports performance. However, commonly used methods of measuring core stability in research do not reflect functional nature of core stability in uninjured, healthy and athletic populations. Recent reviews have proposed a more dynamic, whole body approach to training core stabilization, and research has begun to measure and report efficacy of these modes training. The purpose of this study was to assess extent to which these developments have informed people currently working and participating in sport. METHODS: An online survey questionnaire was developed around common themes on core stability training as defined in the current scientific literature and circulated to a sample population of people working and participating in sport. Survey results were assessed against key elements of the current scientific debate. RESULTS: Perceptions on anatomy and function of the core were gathered from a representative cohort of athletes, coaches, sports science and sports medicine practitioners (n = 241), along with their views on effectiveness of various current and traditional exercise training modes. Most popular method of testing and measuring core function was subjective assessment through observation (43%), while a quarter (22%) believed there was no effective method of measurement. Perceptions of people in sport reflect the scientific debate, and practitioners have adopted a more functional approach to core stability training. There was strong support for loaded, compound exercises performed upright, compared to moderate support for traditional core stability exercises. Half of the participants (50%) in the survey, however, still support a traditional isolation core stability training. CONCLUSION: Perceptions in applied practice on core stability training for dynamic athletic performance are aligned to a large extent to the scientific literature

    Trunk muscle activation in the back and hack squat at the same relative loads.

    Get PDF
    The hack squat (HS) is likely to produce a greater 1 repetition maximum (1RM) compared to the back squat (BS). This can be attributed to the support of the trunk during the HS compared to no support during BS. This support however, may compromise trunk muscle activation (TMA), therefore producing different training adaptations. Accordingly, the purpose of this study was to compare 1RM in BS and HS and TMA at 4 relative loads, 65, 75, 85 and 95% of maximal system mass. Ten males completed 3 test sessions:1) BS and HS 1RM, 2) HS & BS neuromuscular test familiarization, and, 3) Neuromuscular test for 3 reps at 4 loads for BS and HS. BS TMA was significantly greater (p<0.05) than HS for all muscles and phases except rectus abdominus in concentric phase. TMA increased (p<0.05) with load in all muscles for both exercises and phases apart from lumbar sacral erector spinae in HS eccentric phase. Mean HS 1RM and submaximal loads were significantly (p<0.0001) higher than the equivalent BS loads. Duration of the eccentric phase was higher (p<0.01) in HS than BS but not different in concentric phase. Duration increased significantly (p<0.01) with load in both exercises and both phases. Despite higher absolute tests loads in HS, TMA was higher in BS. TMA is sensitive to load in both exercises. BS is more effective than HS in activating the muscles of the trunk and therefore arguably more effective in developing trunk strength and stability for dynamic athletic performance

    Increased strength is associated with lower trunk muscle activation during loaded back squats and dynamic body weight jumps

    Get PDF
    This study measured how back squat strength (1RM) affected trunk muscle activation in performing squats, squat jump (SJ), and countermovement jump (CMJ). Fifty males, completed two test sessions. Squat 1RM was tested first. Participants were assigned to three groups: (a) strong group (SG), (b) middle group (MG), or (c) weak group (WG), based on relative squat 1RM. Test 2: EMG data were collected for four trunk muscle sites; rectus abdominus, external oblique, lumbar sacral erector spinae, and upper lumbar erector spinae while performing (3 reps) SJ, CMJ, and squats at 65%, 75%, and 95% 1RM. Squat and jump phases were determined from a linear transducer and 30° tertiles for each phase, from a knee goniometer. Normalized root mean square RMS increased significantly with load for each muscle site in both squat phases. Trunk muscle activation was significantly lower in SG vs WG in eccentric and concentric squat phases. Concentric and flight phase RMS in both jumps was lower in SG vs WG. RMS increased significantly for each eccentric tertile and first concentric tertile. Greater squat strength is associated with lower trunk muscle activation in squats and jumps and trunk muscle activation was highest in the two deepest 30° squat segments. In conclusion, back squat strength training to parallel, where top of thighs are horizontal, is an effective method of developing dynamic trunk stability

    Exploring the transcriptomic data of the Australian paralysis tick, Ixodes holocyclus

    Get PDF
    Ixodes holocyclus is the paralysis tick commonly found in Australia. I. holocyclus does not cause paralysis in the primary host – bandicoots, but markedly affects secondary hosts such as companion animals, livestock and humans. Holocyclotoxins are the neurotoxin molecules in I. holocyclus responsible for paralysis symptoms. There is a limited understanding of holocyclotoxins due to the difficulties in purifying and expressing these toxins in vitro. Next-generation sequencing technologies were utilised for the first time to generate transcriptome data from two cDNA samples –salivary glands samples collected from female adult ticks engorged on paralysed companion animals and on bandicoots. Contigencoded proteins in each library were annotated according to their best BLAST match against several databases and functionally assigned into six protein categories: housekeeping, transposable elements, pathogen-related, hypothetical, secreted and novel. The “secreted protein” category is comprised of ten protein families: enzymes, protease inhibitors, antigens, mucins, immunity-related, lipocalins, glycinerich, putative secreted, salivary and toxin-like. Comparisons of contig representation between the two libraries reveal the differential expression of tick proteins collected from different hosts. This study provides a preliminary description of the I. holocyclus tick salivary gland transcriptome

    Impact of resistance training status on trunk muscle activation in a fatiguing set of heavy back squats

    Get PDF
    Purpose: In this study we measured neural activation (EMG) in four trunk stabilizer muscles and vastus lateralis (VL) in trained and novice participants during a set of squat repetitions to volitional fatigue at 85% 1RM. Methods: Forty males were recruited into two groups, novice (NG: n = 21) and experienced (EG: n = 19), according to relative squat 1RM. Participants were tested twice to: (1) determine squat 1RM, and (2) complete a single set of repetitions to volitional fatigue at 85% 1RM. Relative squat 1RM; NG  160% body mass. Neuromuscular activation was measured by EMG for the following: rectus abdominus (RA), external oblique (EO), lumbar sacral erector spinae (LSES), upper lumbar erector spinae (ULES) and VL in eccentric and concentric phase. Completed repetitions, RPE and EMG in repetition 1 and at 20, 40, 60, 80 and 100% of completed repetitions were analysed. Results: No group differences were found between number repetitions completed and RPE in repetitions to volitional fatigue at 85% 1RM. Neuromuscular activation increased significantly in all muscle groups in eccentric and concentric phase apart from RA in the eccentric phase. Trunk neuromuscular activation was higher in NG compared to EG and this was significant in EO, LSES and ULES in eccentric phase and LSES in the concentric phase. VL activation increased in both phases with no group differences. Conclusion: Trunk neuromuscular activation increases in a fatiguing set of heavy squats regardless of training status. Increased back squat strength through training results in lower neuromuscular activation despite greater absolute external squat loads

    Exploring the Transcriptomic Data of the Australian Paralysis Tick, Ixodes Holocyclus

    Get PDF
    Ixodes holocyclus is the paralysis tickcommonly found in Australia. I. holocyclus does notcause paralysis in the primary host – bandicoots, butmarkedly affects secondary hosts such as companionanimals, livestock and humans. Holocyclotoxins are theneurotoxin molecules in I. holocyclus responsible forparalysis symptoms. There is a limited understanding ofholocyclotoxins due to the difficulties in purifying andexpressing these toxins in vitro. Next-generationsequencing technologies were utilised for the first time togenerate transcriptome data from two cDNA samples –salivary glands samples collected from female adult ticksengorged on paralysed companion animals and onbandicoots. Contig-encoded proteins in each librarywere annotated according to their best BLAST matchagainst several databases and functionally assigned intosix protein categories: housekeeping, transposableelements, pathogen-related, hypothetical, secreted andnovel. The “secreted protein” category is comprised often protein families: enzymes, protease inhibitors,antigens, mucins, immunity-related, lipocalins, glycinerich,putative secreted, salivary and toxin-like.Comparisons of contig representation between the twolibraries reveal the differential expression of tickproteins collected from different hosts. This studyprovides a preliminary description of the I. holocyclustick salivary gland transcriptome

    PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium

    Get PDF
    Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions. Therefore, a comparison of phosphovariants between individuals or between species can give clues about phenotypic differences. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    Get PDF
    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs
    corecore