53 research outputs found

    Development of an Affimer-antibody combined immunological diagnosis kit for glypican-3

    Get PDF
    Glypican-3 (GPC3) is a promising new marker for hepatocellular carcinoma, but the reported values for serum GPC3 differ markedly between currently available kits. Here we isolated Affimer non-antibody binding proteins against GPC3 by phage display and developed a new sandwich chemiluminescence immunoassay (CLIA) combining an Affimer with a monoclonal antibody (Affimer-MAb CLIA). The proposed CLIA assay demonstrated a wide linear range  0.03–600 ng/mL) with a good linear correlation coefficient (0.9999), a high detection limitation (0.03 ng/mL) and specificity (0–0.002%) for detection of GPC3. The accuracy, hook effect and stability were demonstrated to be satisfactory. The mean level of GPC3 in serum was higher (>8.5 fold, P < 0.001) in hepatocellular carcinoma patients compared to healthy and other liver disease individuals. A poor correlation (correlation coefficients ranged from −0.286 to 0.478) was observed through pairwise comparison within different kits. However, only this newly developed CLIA test showed high specificity and correlated with the “gold standard” GPC3-immunohistochemistry. This study indicates that Affimer-MAb CLIA can be used to generate a sensitive immunodiagnostic kit, which offers the potential for a highly specific clinically-relevant detection system

    Dao, harmony and personhood: towards a Confucian ethics of technology

    Get PDF
    A closer look at the theories and questions in philosophy of technology and ethics of technology shows the absence and marginality of non-Western philosophical traditions in the discussions. Although, increasingly, some philosophers have sought to introduce non-Western philosophical traditions into the debates, there are few systematic attempts to construct and articulate general accounts of ethics and technology based on other philosophical traditions. This situation is understandable, for the questions of modern sciences and technologies appear to be originated from the West; at the same time, the situation is undesirable. The overall aim of this paper, therefore, is to introduce an alternative account of ethics of technology based on the Confucian tradition. In doing so, it is hoped that the current paper can initiate a relatively uncharted field in philosophy of technology and ethics of technology

    Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye

    Get PDF
    Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P. through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz from the Unidad de Proteómica, Universidad Complutense de Madrid – Parque Científico de Madrid, Spain for excellent technical assistance in the successful implementation of all proteomics procedures including peptide identification, and Joana Tulha from the CBMA, Universidade do Minho, Portugal, for helping with the SDS-PAGE experiments, and the tedious and laborious ECM extraction procedures. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with the dataset identifier PXD001133. We would like to thank the PRIDE team for all the help and support during the submission process.info:eu-repo/semantics/publishedVersio

    The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling

    Get PDF
    Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling

    Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Get PDF
    Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL

    AFP, PIVKAII, GP3, SCCA-1 and follisatin as surveillance biomarkers for hepatocellular cancer in non-alcoholic and alcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence and mortality of hepatocellular cancer (HCC) complicating alcoholic and non-alcoholic fatty liver diseases (ALD and NAFLD) is rising in western societies. Despite knowing the at risk populations for HCC development, the lack of sensitive and specific means of surveillance hampers disease detection at curable stages. The most widely used serum HCC marker is alpha-fetoprotein (AFP), while PIVKA-II, glypican-3 (GP3) and Squamous Cell Carcinoma Antigen -1 (SCCA-1) have been proposed as new biomarkers. Assessment of these HCC biomarkers has largely been performed in patients with viral hepatitis. We conducted a cross sectional study assessing the value of these serum proteins, as well a novel candidate biomarker -follistatin – in patients with HCC arising on a background of ALD or NAFLD.</p> <p>Methods</p> <p>Pre-treatment serum samples from 50 patients with HCC arising on a background of ALD (n = 31) or NAFLD (n = 19) were assessed by specific ELISA assay for PIVKAII, Glypican-3, SCCA-1 and Follistatin. Results were compared and contrasted with a control patient group with biopsy proven steatohepatitis-related cirrhosis (n = 41). The diagnostic accuracy of each of the candidate biomarkers was evaluated using receiver operating characteristic (ROC) curve analysis, reporting the area under the curve (AUC) and its 95% confidence interval (CI). Performance was compared to that of the established biomarker, AFP.</p> <p>Results</p> <p>Serum levels of all proteins were assessed by specific ELISA assays. GP3, SCCA-1 and follistatin had no HCC surveillance benefit in these patients. AFP and PIVKAII were superior to the other markers, particularly in combination.</p> <p>Conclusion</p> <p>We conclude that while novel means of surveillance are urgently required, the combination of AFP and PIVKAII for HCC is an improvement on AFP alone in ALD/NAFLD patients. Furthermore, our data in this homogenous subset of patients- particularly that confirming no role for SCCA-1 – suggests that the choice of optimal biomarkers for HCC surveillance may be determined by the aetiology of underlying chronic liver disease.</p

    Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    Get PDF
    Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link
    corecore