2,051 research outputs found
Lovelock theories, holography and the fate of the viscosity bound
We consider Lovelock theories of gravity in the context of AdS/CFT. We show
that, for these theories, causality violation on a black hole background can
occur well in the interior of the geometry, thus posing more stringent
constraints than were previously found in the literature. Also, we find that
instabilities of the geometry can appear for certain parameter values at any
point in the geometry, as well in the bulk as close to the horizon. These new
sources of causality violation and instability should be related to CFT
features that do not depend on the UV behavior. They solve a puzzle found
previously concerning unphysical negative values for the shear viscosity that
are not ruled out solely by causality restrictions. We find that, contrary to
previous expectations, causality violation is not always related to positivity
of energy. Furthermore, we compute the bound for the shear viscosity to entropy
density ratio of supersymmetric conformal field theories from d=4 till d=10 -
i.e., up to quartic Lovelock theory -, and find that it behaves smoothly as a
function of d. We propose an approximate formula that nicely fits these values
and has a nice asymptotic behavior when d goes to infinity for any Lovelock
gravity. We discuss in some detail the latter limit. We finally argue that it
is possible to obtain increasingly lower values for the shear viscosity to
entropy density ratio by the inclusion of more Lovelock terms.Comment: 42 pages, 17 figures, JHEP3.cls. v2: reference adde
Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women
The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT).
However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made
Pathologies in Asymptotically Lifshitz Spacetimes
There has been significant interest in the last several years in studying
possible gravitational duals, known as Lifshitz spacetimes, to anisotropically
scaling field theories by adding matter to distort the asymptotics of an AdS
spacetime. We point out that putative ground state for the most heavily studied
example of such a spacetime, that with a flat spatial section, suffers from a
naked singularity and further point out this singularity is not resolvable by
any known stringy effect. We review the reasons one might worry that
asymptotically Lifshitz spacetimes are unstable and employ the initial data
problem to study the stability of such systems. Rather surprisingly this
question, and even the initial value problem itself, for these spacetimes turns
out to generically not be well-posed. A generic normalizable state will evolve
in such a way to violate Lifshitz asymptotics in finite time. Conversely,
enforcing the desired asymptotics at all times puts strong restrictions not
just on the metric and fields in the asymptotic region but in the deep interior
as well. Generically, even perturbations of the matter field of compact support
are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including
relationship to Gubser's conjecture and singularity in RG flow solution, plus
minor clarification
New Kadampa Buddhists and Jungian psychological type
Building on previous studies on Canadian Anglicans and Catholics, this study examines and discusses the psychological type profile of 31 adherents to New Kadampa Buddhism. Like Anglicans and Catholics, Buddhists preferred introversion (I). Like Anglicans who preferred intuition (N) and unlike Catholics who preferred sensing (S), Buddhists displayed a preference for intuition (N). Unlike Anglicans and Catholics who both preferred feeling (F), Buddhists displayed a balance between feeling (F) and thinking (T). Like Anglicans and unlike Catholics, Buddhists preferred the Apollonian temperament (NF) over the Epimethean temperament (SJ). These data are discussed to interpret the psychological appeal of New Kadampa Buddhism
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
Limited contribution of permafrost carbon to methane release from thawing peatlands
Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands
Moderate and heavy metabolic stress interval training improve arterial stiffness and heart rate dynamics in humans
Traditional continuous aerobic exercise training attenuates age-related increases of arterial stiffness, however, training studies have not determined whether metabolic stress impacts these favourable effects. Twenty untrained healthy participants (n = 11 heavy metabolic stress interval training, n = 9 moderate metabolic stress interval training) completed 6 weeks of moderate or heavy intensity interval training matched for total work and exercise duration. Carotid artery stiffness, blood pressure contour analysis, and linear and non-linear heart rate variability were assessed before and following training. Overall, carotid arterial stiffness was reduced (p 0.05). This study demonstrates the effectiveness of interval training at improving arterial stiffness and autonomic function, however, the metabolic stress was not a mediator of this effect. In addition, these changes were also independent of improvements in aerobic capacity, which were only induced by training that involved a high metabolic stress
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA
The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02
- …
