There has been significant interest in the last several years in studying
possible gravitational duals, known as Lifshitz spacetimes, to anisotropically
scaling field theories by adding matter to distort the asymptotics of an AdS
spacetime. We point out that putative ground state for the most heavily studied
example of such a spacetime, that with a flat spatial section, suffers from a
naked singularity and further point out this singularity is not resolvable by
any known stringy effect. We review the reasons one might worry that
asymptotically Lifshitz spacetimes are unstable and employ the initial data
problem to study the stability of such systems. Rather surprisingly this
question, and even the initial value problem itself, for these spacetimes turns
out to generically not be well-posed. A generic normalizable state will evolve
in such a way to violate Lifshitz asymptotics in finite time. Conversely,
enforcing the desired asymptotics at all times puts strong restrictions not
just on the metric and fields in the asymptotic region but in the deep interior
as well. Generically, even perturbations of the matter field of compact support
are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including
relationship to Gubser's conjecture and singularity in RG flow solution, plus
minor clarification