780 research outputs found
Pulse, polarization and topology shaping of polariton fluids
Here we present different approaches to ultrafast pulse and polarization shaping, based on a âquantum fluidâ platform of polaritons. Indeed we exploit the normal modes of two dimensional polariton fluids made of strong coupled quantum well excitons and microcavity photons, by rooting different polarization and topological states into their sub-picosecond Rabi oscillations. Coherent control of two resonant excitation pulses allows us to prepare the desired state of the polariton, taking benefit from its four-component features given by the combination of the two normal modes with the two degrees of polarization. An ultrafast imaging based on the digital off-axis holography technique is implemented to study the polariton complex wavefunction with time and space resolution. We show in order coherent control of the polariton state on the Bloch sphere, an ultrafast polarization sweeping of the PoincarĂ© sphere, and the dynamical twist of full PoincarĂ© states such as the skyrmion on the sphere itself. Finally, we realize a new kind of ultrafast swirling vortices by adding the angular momentum degree of freedom to the two-pulse scheme. These oscillating topology states are characterized by one or more inner phase singularities tubes which spirals around the axis of propagation. The mechanism is devised in the splitting of the vortex into the upper and lower polaritons, resulting in an oscillatory exchange of energy and angular momentum and in the emitted time and space structured photonic packets
Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.
Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data
Topological order and thermal equilibrium in polariton condensates
The BerezinskiiâKosterlitzâThouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic lightâmatter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize drivenâdissipative phase transitions and enable the investigation of topological ordering in open systems
Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in nextâgeneration rigid and flexible device applications
Funder: Aziz FoundationFunder: Downing College, CambridgeFunder: Isaac Newton Trust; Id: http://dx.doi.org/10.13039/501100004815Abstract: Nickel oxide (NiO x ), a pâtype oxide semiconductor, has gained significant attention due to its versatile and tunable properties. It has become one of the critical materials in wide range of electronics applications, including resistive switching random access memory devices and highly sensitive and selective sensor applications. In addition, the wide band gap and high work function, coupled with the low electron affinity, have made NiO x widely used in emerging optoelectronics and pân heterojunctions. The properties of NiO x thin films depend strongly on the deposition method and conditions. Efficient implementation of NiO x in nextâgeneration devices will require controllable growth and processing methods that can tailor the morphological and electronic properties of the material, but which are also compatible with flexible substrates. In this review, we link together the fundamental properties of NiO x with the chemical processing methods that have been developed to grow the material as thin films, and with its application in electronic devices. We focus solely on thin films, rather than NiO x incorporated with oneâdimensional or twoâdimensional materials. This review starts by discussing how the pâtype nature of NiO x arises and how its stoichiometry affects its electronic and magnetic properties. We discuss the chemical deposition techniques for growing NiO x thin films, including chemical vapor deposition, atomic layer deposition, and a selection of solution processing approaches, and present examples of recent progress made in the implementation of NiO x thin films in devices, both on rigid and flexible substrates. Furthermore, we discuss the remaining challenges and limitations in the deposition of deviceâquality NiO x thin films with chemical growth methods. imag
Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste
The coexistence of sulphate-reducing bacteria and methanogenic archaea in the reactors during the anaerobic digestion from sulphate-containing waste could favor the accumulation of sulfide on the biogas, and therefore reduce its quality. In this study, the effect of sulphate-reducing bacteria inhibitor (MoOâ2
4 ) addition in a two phase system from sulphate-containing municipal solid waste to improve the quality of the biogas has been investigated. The results showed that although SRB and sulphide production decreased, the use of inhibitor was not effective to improve the anaerobic digestion in a two phase
system from sulphate-containing waste, since a significant decrease on biogas and organic matter removal were observed. Before MoOâ2 4 addition the average values of volatile solid were around 12 g/kg, after 5 days of inhibitor use, those values did exceed to 28 g/kg. Molybdate caused acidification in the reactor and it was according to decrease in the pH values. In relation to microbial consortia, the effect of inhibitor was a decrease in Bacteria (44%; 60% in sulphate-reducing bacteria) and Archaea (38%) population
Low grade squamous intra-epithelial lesions and human papillomavirus infection in Colombian women
Low grade squamous intra-epithelial lesions could be considered as a manifestation of human papillomavirus exposition, however the discrepancy between rates of infection with human papillomavirus and development of low grade squamous intra-epithelial lesions is notable. Here we report a cross-sectional three-armed caseâcontrol study in the Colombian population, to compare the risk factors of women with low grade squamous intra-epithelial lesions with that of human papillomavirus DNA-negative and positive women with normal cytology
Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust
A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
- âŠ