119 research outputs found
On the Wiener-Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate.
A solution to the problem of water-wave scattering by a semi-infinite submerged thin elastic plate, which is either porous or non-porous, is presented using the Wiener-Hopf technique. The derivation of the Wiener-Hopf equation is rather different from that which is used traditionally in water-waves problems, and it leads to the required equations directly. It is also shown how the solution can be computed straightforwardly using Cauchy-type integrals, which avoids the need to find the roots of the highly non-trivial dispersion equations. We illustrate the method with some numerical computations, focusing on the evolution of an incident wave pulse which illustrates the existence of two transmitted waves in the submerged plate system. The effect of the porosity is studied, and it is shown to influence the shorter-wavelength pulse much more strongly than the longer-wavelength pulse
Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming?
Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels
Regulating STING in health and disease.
The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases
Hydroelastic interaction of nonlinear waves with floating sheets
Hydroelastic responses of floating elastic surfaces to incident non-linear waves of solitary and cnoidal type are studied. There are N number of the deformable surfaces and these are represented by thin elastic plates of variable properties and different size and rigidity. The coupled motion of the elastic surfaces and the fluid are solved simultaneously within the framework of linear beam theory for the structures and the nonlinear Level I Green-Naghdi(GN) theory for the fluid. The water surface elevation, deformations of the elastic surfaces, velocity and pressure fields, wave reflection and transmission coefficients are calculated and presented. Results of the model are compared with existing laboratory measurements and other numerical solutions. In the absence of any restriction on the nonlinearity of the wave field, number of surfaces, their sizes and rigidities, a wide range of wave-structure conditions are considered. It is found that wave reflection from an elastic surface changes significantly with the rigidity, and highest reflection is observed when the plate is rigid (not elastic). It is also found that due to the wave-structure interaction, local wave fields with different length and celerity are formed under the plates. In the case of multiple floating surfaces, it is observed that the spacing between plates has more significant effect on the wave field than their lengths. Also, presence of relatively smaller floating plates upwave modifies remarkably the deformation and response of the downwave floating surface
Cold Gas at High Redshift
We discuss the current observational and theoretical issues concerning cold
gas at high redshift and present simulations showing how a number of
observational issues can be resolved with planned future instrumentation.Comment: 13 page LaTeX requires crckapb.sty and psfig.sty, 9 compressed and
tarred postscript figures (410kB) available at
ftp://ftp.nfra.nl/pub/outgoing/rbraun/coldghiz/figs.tar.Z Complete compressed
postscript paper (475kB) available at
ftp://ftp.nfra.nl/pub/outgoing/rbraun/coldghiz/paper.ps.Z To appear in "Cold
Gas at High Redshift", Eds. M.Bremer et al. (Kluwer, Dordrecht
Interferon-Alpha Mediates Restriction of Human Immunodeficiency Virus Type-1 Replication in Primary Human Macrophages at an Early Stage of Replication
Type I interferons (IFNα and β) are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNα is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNα to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNα occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNα treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNα. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNα mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNα induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNα
Isolation and handedness of helical coiled cellulosic thickenings from plant petiole tracheary elements
Elimination of Hepatitis C Virus from Hepatocytes by a Selective Activation of Therapeutic Molecules
To eliminate hepatitis C virus (HCV) from infected hepatocytes, we generated two therapeutic molecules specifically activated in cells infected with HCV. A dominant active mutant of interferon (IFN) regulatory factor 7 (IRF7) and a negative regulator of HCV replication, VAP-C (Vesicle-associated membrane protein-associated protein subtype C), were fused with the C-terminal region of IPS-1 (IFNβ promoter stimulator-1), which includes an HCV protease cleavage site that was modified to be localized on the ER membrane, and designated cIRF7 and cVAP-C, respectively. In cells expressing the HCV protease, cIRF7 was cleaved and the processed fragment was migrated into the nucleus, where it activated various IFN promoters, including promoters of IFNα6, IFNβ, and IFN stimulated response element. Activation of the IFN promoters and suppression of viral RNA replication were observed in the HCV replicon cells and in cells infected with the JFH1 strain of HCV (HCVcc) by expression of cIRF7. Suppression of viral RNA replication was observed even in the IFN-resistant replicon cells by the expression of cIRF7. Expression of the cVAP-C also resulted in suppression of HCV replication in both the replicon and HCVcc infected cells. These results suggest that delivery of the therapeutic molecules into the liver of hepatitis C patients, followed by selective activation of the molecules in HCV-infected hepatocytes, is a feasible method for eliminating HCV
The Ubiquitin-Like Protein PLIC-1 or Ubiquilin 1 Inhibits TLR3-Trif Signaling
Background: The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. Methodology/Principal Findings: Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-β promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. Conclusions: Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif. © 2011 Biswas et al
- …
