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Abstract

A solution to the problem of water-wave scattering by a semi-infinite submerged
thin elastic plate, which is either porous or non-porous, is presented using the Wiener–
Hopf technique. The derivation of the Wiener–Hopf equation is rather different from
that which is used traditionally in water-waves problems, and it leads to the required
equations directly. It is also shown how the solution can be computed straightfor-
wardly using Cauchy-type integrals, which avoids the need to find the roots of the
highly non-trivial dispersion equations. We illustrate the method with some numerical
computations, focusing on the evolution of an incident wave pulse which illustrates
the existence of two transmitted waves in the submerged plate system. The effect of
the porosity is studied, and it is shown to influence the shorter-wavelength pulse much
more strongly than the longer-wavelength pulse.

1 Introduction

The field of wave–structure interactions is concerned with the propagation of wave energy
within a fluid (liquid or gas) and the coupled mechanical response excited in an accompa-
nying body. Such interactions are more involved than simple scattering processes as they
feature wave energy propagation in multiple forms, for example, when an airflow excites a
mechanical response in an aeroplane wing (aeroelastic flutter) or when a water wave excites
bending waves in a floating elastic plate (floating ice sheets). Wave–structure interactions
are studied in a range of disciplines owing to their incredibly diverse and wide-ranging engi-
neering applications, from aircraft design to marine hydrodynamics and coastal engineering
[1, 2]. The study of wave–structure interactions, particularly those involving flexible hori-
zontal plates, has been the subject of extensive investigation over the past several decades.
We refer to the review papers [3, 4] for a summary of the research, with particular focus on
the propagation of waves in ice-infested oceans.

Several canonical wave–structure-interaction problems exist for elastic plates, the most
prominent of which is the linear scattering of waves by a floating (thin) elastic semi-infinite
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plate (i.e. a floating plate of negligible submergence). The first attempt to solve this problem
used the Wiener–Hopf method [5]; however, the solution was not completed in this work.
The problem was finally solved using variational methods [6] and the various papers inspired
by this work are summarised by Fox & Squire [7]. In fact, the Wiener–Hopf solution to
the semi-infinite floating elastic plate problem started by Evans & Davies [5] was eventually
determined by several groups [8, 9, 10]. Another canonical problem is the semi-infinite
submerged elastic plate, which acts as a model for a broad class of problems in which a flexible
body is immersed within a fluid. For this problem, analogous to the case of a two-layer fluid,
waves exist at all interfaces: at both the free surface and along the submerged plate. In fact,
for both the submerged elastic plate and two-layer fluid problems there are two transmitted
waves on the free surface [11, 12]; for the submerged plate problem, the first transmitted
wave relates straightforwardly to the incident field and the second transmitted field emerges
due to fluid–structure coupling with the elastic plate. As discussed below, we demonstrate
here that the presence of poroelasticity in the submerged plate can strongly suppress one of
the transmitted waves (the plate-interaction wave), leaving only one significant transmitted
surface wave that attenuates slowly. The solution for the semi-infinite submerged elastic
plate was found first using the eigenfunction matching method [13] and later by the Wiener–
Hopf method [14]. In the water-wave context, horizontal submerged plates are particularly
popular to dissipate water-wave energy, e.g. in breakwaters or at the end of wave flumes, as
they have little effect on horizontal currents [15].

The porous plate is a natural and significant extension to the plate problems outlined
above and has been the subject of recent attention in a range of applications [16, 17]. In
particular, it naturally dissipates energy. The problem of a submerged semi-infinite porous
rigid dock was solved by the Wiener–Hopf method in Evans & Peter [18]. Since porosity
is often associated with thin objects (compared to its other dimensions) the porous plate
responds elastically if subjected to incident waves unless they are very short in wavelength.
On the other hand, if horizontal (elastic) plates are to be used to dissipate wave energy,
it makes sense to make them porous. Therefore, it is natural to consider the water-wave
interaction with a porous elastic plate. In fact, porous plates have been studied lately with
the solution found by eigenfunction matching [19]. We also refer to Meylan et al. [20] for a
recent review of the literature on floating or submerged porous plates. The interest in porous
plates extends beyond the water-waves community; for example, there is considerable interest
within the aeroacoustics community on efficiently computing the response of porous plates
to high-frequency air flows [21, §5.4.2],[16], as such systems are leading-order models for
investigating noise-emission suppression by aircraft. There is also a considerable body of
work from within the acoustics community [22, 23, 24, 25].

As identified above, the Wiener–Hopf method is a robust solution procedure that is widely
used in many fields [26, 1, 2, 27]. It provides a simple semi-analytical treatment for problems
which are typically solved by numerical techniques otherwise. The method relies on domain
decomposition, i.e. splitting a function analytic on the real line into functions analytic in the
upper and lower half-planes. In the standard application of the method, this decomposition
is accomplished by calculating and sorting the zeros of a dispersion equation or equivalent
[8, 2, 9, 10, 18, 14]. Often, this is numerically challenging as there is no systematic method
to find the zeros. An alternative approach is to compute this splitting via a Cauchy-type
integral, which avoids this need of factorisation [26, §1.3]. For the submerged porous dock,
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this was first achieved by Evans & Peter [18].
In this paper, we present a Wiener–Hopf solution to the problem of a semi-infinite poroe-

lastic plate submerged in an incompressible fluid of finite depth. Our derivation does not
exploit the factorisation of the dispersion equations but instead uses Cauchy integrals. We
find that the presence of porosity can impact the transmitted surface-wave behaviour of the
fluid significantly, forcefully suppressing the secondary short-wavelength wave and attenuat-
ing the long-wavelength wave (corresponding to the incident field). This finding may have a
bearing on the development of structures for coastal-engineering applications.

The outline of the paper is as follows. In Section 2, we present the governing equations for
the fluid–structure interaction (coupling a potential flow to a submerged, lossless Kirchhoff–
Love plate), giving rise to an unknown polynomial P = P (s) which emerges from repeated
integration by parts. In Section 3, we present the product decomposition of the Wiener–Hopf
kernel involving Cauchy-type integrals and determine the asymptotic behaviour of the system
at infinity, giving rise to an unknown polynomial J = J(s). In Section 4, we determine these
two polynomials using the plate-edge boundary conditions and by imposing appropriate
analyticity conditions in the upper- and lower-half planes. Having solved the Wiener–Hopf
system, we then construct the total potential using residue calculus in Section 5, outlining
the energy-balance relation for the system and presenting numerical results. In Section 6, we
consider the extension of the system to submerged poroelastic plates, incorporating the effect
of a porous flow across the plate (following Darcy’s law), which follows straightforwardly
from the non-porous case thanks to our way of deriving the Wiener–Hopf equation. We also
produce comparative numerical results to the lossless case. Finally, concluding remarks are
given in Section 7.

2 Governing equations

In this work, we consider the problem of wave propagation through a waveguide comprising
a horizontal semi-infinite elastic plate submerged within a fluid domain, which possesses
a rigid horizontal sea floor and free fluid surface. The fluid medium is governed by the
three-dimensional Laplace equation

∆Φ(x, y, z; t) = 0, for (x, y, z) ∈ Ω, (1)

where ∆ = ∂2x + ∂2z + ∂2z , Ω = {(x, y) ∈ R2 × z ∈ (−h, 0)} \Γp is the fluid domain, Γp =
{x > 0× y ∈ R× z = −d} is the elastic plate domain, where d < h, and Φ is the three-
dimensional fluid velocity potential. Note that the operator in (1) above is an appropriate
model for fluid flows that are both incompressible and irrotational (i.e., where the fluid
density is constant and so the conservation of mass condition is given in terms of the fluid
velocity (ux, uy, uz) alone as ∂xux + ∂yuy + ∂zuz = 0 and the flow velocity is decomposed
as (ux, uy, uz) = (∂xΦ, ∂yΦ, ∂zΦ), respectively). The bending response of the submerged
uniform plate is given by the Kirchhoff–Love thin plate equation

D∆2
‖wb(x, y; t) + hPρ∂

2
twb(x, y; t) = −q, for (x, y) ∈ Γp, (2)

where D = h3PE/(12[1 − ν2]) is the bending stiffness, hP is the total plate thickness, E is
the Young’s modulus, ν is the Poisson ratio, ∆‖ = ∂2x + ∂2y is a two-dimensional Laplace
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Figure 1: (a) Three-dimensional segment, and (b) two-dimensional cross section of a submerged
semi-infinite elastic plate at depth z = −d with a rigid sea floor at depth z = −h and a free surface
at z = 0. Incident surface waves excite reflected and transmitted fields travelling to the left and
right, respectively.

operator, wb(x, y; t) is the out-of-plane displacement, ρ is the plate mass density, and q is
the plate loading.

We consider incident potential fields of the form Φinc(x, y, z) = φinc(x, z) exp(ikincy y −
iωt), where (kincx , kincy , kincz ) denotes the incident wavevector, and ω is the angular frequency,
in the long-wavelength limit kincy h → 0. That said, the formulation outlined in-text is
readily extended to consider skew incidence. Accordingly we decompose all potentials in the
analogous form Φ(x, y, z; t) = φ(x, z) exp(ikincy y − iωt), decompose the plate displacement as
wb(x, y; t) = w(x, y) exp(−iωt), and consider a problem independent of y (i.e., where the y
dependence in Φ is the same as in Φinc).

Furthermore, for the plate forcing we assume a linearised Bernoulli response for the
pressure on the submerged beam

q = P (x, y,−d)
∣∣+
− = {ρF gd− ρF ∂tΦ(x, y,−d; t)}

∣∣+
− = iωρFφ

∣∣+
− exp(−iωt), (3)

where the ρF gd term describes the hydrostatic pressure of the fluid at depth z = −d, and
the second term denotes the pressure contribution from the fluid motion. Here we define
φ
∣∣+
− = φ(x,−d+)−φ(x,−d−) as the jump discontinuity in the potential across the thin plate,

where −d+ is the upper side and −d− the lower side of the plate, ρF is the density of the
fluid, and g = 9.8 m · s−2 is the gravitational acceleration constant.

Finally, we impose a kinematic condition between the plate and fluid requiring that the
normal velocity of the fluid matches the normal velocity of the plate

∂twb(x, y; t) = ∂zΦ(x, y,−d; t), for (x, y) ∈ Γp, (4)

which implies continuity of the normal fluid velocity across the plate. Accordingly, we arrive
at the two-dimensional system of equations considered in this work involving a single scalar
dependent variable φ(x, z) satisfying Laplace’s equation

∆⊥φ(x, z) = 0, for (x, z) ∈ Ω, (5)
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where ∆⊥ = ∂2x + ∂2z is a two-dimensional Laplace operator, with the free surface, elastic
plate, fluid velocity, and rigid sea floor conditions

∂zφ(x, z)− αφ(x, z) = 0, for z = 0 and x ∈ R, (6a)

(∂4x − µ4)∂zφ(x, z) + βφ(x, z)
∣∣+
− = 0, for z = −d and x > 0, (6b)

∂zφ(x, z)
∣∣+
− = 0, for z = −d and x ∈ R, (6c)

∂zφ(x, z) = 0, for z = −h and x ∈ R, (6d)

where α = ω2/g, µ4 = ρhPω
2/D, and β = ρFω

2/D. The conditions at the plate edge (i.e.,
clamped, free edge, or simply supported conditions) are specified later. For the pressure
jump across the plate, the leading order asymptotic behaviour is easily shown to be

lim
x→0−

φ(x,−d)
∣∣+
− ∼ O(x1/2), (7)

near the plate edge, regardless of the conditions, and that outgoing wave (radiation) condi-
tions are satisfied at infinity [2, Eq. (1.29)]. Note that in place of the pressure condition (7)
we could equivalently impose a condition on the flow velocity [18]

lim
x→0−

√
[∂xφ(x,−d)]2 + [∂zφ(x,−d)]2 ∼ O(x−1/2), (8)

as these are equivalent from a conservation of momentum argument. Both forms are pre-
sented here for later convenience. Next, we decompose the field in terms of an incident and
scattered field

Aφ(x, z) = φinc(x, z) + φs(x, z), (9)

and examine the possible forms of the incident potential for this system in detail. Note that
we introduce the arbitrary scaling factor A for later convenience (for example, if normalising
the potential to have unit amplitude in displacement). Up until Section 5, the scaling
A = 1 is taken without loss of generality. The scattered potential φs is subject to radiation
conditions that the waves are outgoing at infinity and we impose these as part of the solution
procedure.

2.1 Incident potential

The incident potential, which we take to come from x = −∞, must satisfy both the free-
surface (6a) and rigid-floor (6d) conditions, irrespective of the presence of the submerged
plate. Accordingly, we propose the modulated plane-wave ansatz

φinc(x, z) = F ei`x cosh(`(z + h)), (10)

where F is arbitrary. The above ansatz satisfies the rigid-floor condition by inspection, and
admits the dispersion equation

` tanh(`h) = α, (11)

from the free-surface condition. This dispersion equation is symmetric in ` and so has one
real positive root and one real negative root. We choose the value of ` to be the positive real
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solution of this equation, which corresponds to waves travelling to the right. By substituting
the decomposition (9) and plane-wave ansatz (10) into the plate condition (6b) we obtain

(∂4x − µ4)∂zφ
s(x, z) + βφs(x, z)

∣∣+
− = −`(`4 − µ4) sinh(`c)F ei`x, (12)

where c = h− d, and so we specify the incident potential

φinc(x, z) =
− cosh(`(z + h))

`(`4 − µ4) sinh(`c)
ei`x, (13)

for a line source placed at x = −∞ in our free-surface and rigid-floor domain. This choice
of F ensures a simple form for the plate forcing, i.e., the right-hand side of (12).

2.2 Scattered potential

From the decomposition (9) above, the system for the scattered potential takes the form

∆⊥φ
s(x, z) = 0, for (x, z) ∈ Ω, (14)

with the updated boundary conditions

∂zφ
s(x, z)− αφs(x, z) = 0, for z = 0 and x ∈ R, (15a)

(∂4x − µ4)∂zφ
s(x, z) + βφs(x, z)

∣∣+
− = ei`x, for z = −d and x > 0, (15b)

∂zφ
s(x, z)

∣∣+
− = 0, for z = −d and x ∈ R, (15c)

∂zφ
s(x, z) = 0, for z = −h and x ∈ R. (15d)

Next we introduce the Fourier transform

Ψ(s, z) =

∫ ∞
−∞

φs(x, z) eisx dx, (16)

and apply this to the two-dimensional Laplace equation (14) to obtain

(−s2 + ∂2z )Ψ(s, z) = 0, (17)

which has the general solution Ψ(s, z) = G(s) cosh(sz) + H(s) sinh(sz). We then introduce
a (fictitious) partition of the domain in the z direction as

Ψ(s, z) =

{
ΨU(s, z) for − d < z < 0,

ΨL(s, z) for − h < z < −d.
(18)

Consequently for −d < z < 0 we solve

(−s2 + ∂2z )ΨU(s, z) = 0, with (19a)

∂zΨ
U(s, z)− αΨU(s, z) = 0, for z = 0, (19b)
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admitting the form ΨU(s, z) = GU(s) [cosh(sz) + (α/s) sinh(sz)]. Similarly, for−h < z < −d
we solve

(−s2 + ∂2z )ΨL(s, z) = 0, with (20a)

∂zΨ
L(s, z) = 0, for z = −h, (20b)

to obtain ΨL(s, z) = HL(s) cosh(s(z + h))/ sinh(sh). These forms are then matched on
z = −d by imposing continuity of the derivative (15c), i.e.,

∂zΨ
U(s,−d) = ∂zΨ

L(s,−d), (21)

admitting the relation

GU(s) =
s sinh(sc)

sinh(sh)(α cosh(sd)− s sinh(sd))
HL(s). (22)

At this stage the form of HL(s), and therefore the complete x dependence in the solution, is
unknown, and it is through the Wiener–Hopf technique that this dependence is found.

2.3 Field decomposition

Having determined the form of the fluid eigenfunctions, we now introduce the decomposition

φs(x,−d)
∣∣+
− =

{
0 for x < 0,

a(x) for x > 0,
(23)

where a(x) is unknown and for x < 0 there is no pressure discontinuity in the fluid domain.
Similarly, we write the normal velocity as

∂zφ
s(x,−d) =

{
b(x) for x < 0,

m(x) for x > 0,
(24)

where b(x) and m(x) are unknown. Evaluating the Fourier transform of φs(x,−d)
∣∣+
− we

obtain

Ψ(s,−d)
∣∣+
− =

∫ ∞
0

a(x) eisx dx = A+(s) =

[
sinh(sc)ξ(s)− cosh(sc)η(s)

sinh(sh)η(s)

]
HL(s), (25)

where A+(s) is yet unknown, and

ξ(s) = s cosh(sd)− α sinh(sd), (26a)

η(s) = α cosh(sd)− s sinh(sd) (26b)

from the matched eigenfunction expansions earlier, with superscript plus (+) notation de-
noting analyticity in the upper-half plane. Next, we consider the Fourier transform of the
plate operator at z = −d for all x ∈ R, which admits∫ ∞

−∞
(∂4x − µ4)∂zφ

s(x,−d) eisxdx

=

∫ 0

−∞
(∂4x − µ4)∂zφ

s(x,−d) eisxdx+

∫ ∞
0

(∂4x − µ4)∂zφ
s(x,−d) eisxdx. (27)
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The left-hand side of (27), after considering the Fourier transform definition (16) and jump
condition (25) above, takes the form∫ ∞

−∞
(∂4x − µ4)∂zφ

s(x,−d) eisxdx = (s4 − µ4)∂zΨ(s,−d)

=

[
s(s4 − µ4) sinh(sc)η(s)

sinh(sc)ξ(s)− cosh(sc)η(s)

]
A+(s). (28a)

The first term on the right-hand side of (27), after repeated integration by parts, admits∫ 0

−∞
(∂4x − µ4)∂zφ

s(x,−d) eisxdx

=
[
(i∂zφ

s
0)s

3 − (∂x∂zφ
s
0)s

2 − (i∂2x∂zφ
s
0)s+ (∂3x∂zφ

s
0)
]

+ (s4 − µ4)

∫ 0

−∞
∂zφ

s(x,−d) eisxdx

= P (s) + (s4 − µ4)B−(s), (28b)

where boundary contributions from negative infinity are excluded by appropriate regulari-
sation, the subscript zero notation denotes the limit

∂zφ
s
0 = lim

x→0
∂zφ

s(x,−d), (28c)

etc., which represent constant coefficients in the cubic polynomial P (s), and

B−(s) =

∫ 0

−∞
b(x)eisx dx, (28d)

is as yet unknown except that it is analytic in the lower-half plane. The second term on the
right-hand side of (27) is simplified by the boundary condition (15b) and jump decomposition
(23) and so we obtain∫ ∞

0

(∂4x−µ4)∂zφ
s(x,−d) eisxdx = −β

∫ ∞
0

a(x) eisxdx+

∫ ∞
0

ei(`+s)xdx = −βA+(s)+
i

(s+ `)+
,

(28e)
where the result for the improper integral

∫∞
0

exp {i(`+ s)x} dx follows from appropriate
regularisation. By combining all of the above, we finally arrive at the Wiener–Hopf equation

K(s)A+(s) = P (s) + (s4 − µ4)B−(s) +
i

(s+ `)+
, (29)

where

K(s) = s(s4 − µ4)

[
sinh(sc)η(s)

sinh(sc)ξ(s)− cosh(sc)η(s)

]
+ β, (30)

and the Wiener–Hopf system (29) holds in an infinite strip including the real line, but
indented below (above) any isolated singularities on the positive (negative) real line so that
radiation conditions are satisfied. In fact, these poles come from the forcing term and the
Wiener–Hopf kernel function K(s), which is regular along the real line (suitably indented)
and also possesses poles along the imaginary s axis. A key step in the solution procedure is
the factorisation of K(s), which is the focus of the next section.
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3 Product decomposition of the kernel K(s)

It follows from inspection that the denominator of K(s) is the dispersion equation (11) and
thus has poles at s = ±`. Also, we find that

lim
s→±∞

K(s) ∼ −|s|5 (31)

and so we propose the factorisation [28]

K(s) = L(s)Q(s), (32)

where

L(s) = −1

2
s(s4 − µ4)

cosh(πs)

sinh(πs)
, (33a)

Q(s) = 2 tanh(πs)

[
sinh(cs)η(s)

α cosh(sh)− s sinh(sh)
− β

s(s4 − µ4)

]
. (33b)

With this decomposition, we have that Q(s)→ 1 as s→ ±∞. Using the well-known Euler
reflection identities [29, Eqs. (6.1.30), (6.1.31)]

sinh(πz)Γ(1 + iz)Γ(1− iz) = πz, (34a)

cosh(πz)Γ(1
2

+ iz)Γ(1
2
− iz) = π, (34b)

where Γ(z) denotes the Euler Gamma function, then L(s) is readily factorised as

L+(s) =
i(s+ µ)(s+ iµ)Γ(1− is)√

2Γ(1
2
− is)

, (35a)

L−(s) =
i(s− µ)(s− iµ)Γ(1 + is)√

2Γ(1
2

+ is)
, (35b)

thereby removing the need to evaluate infinite products, as is common with other represen-
tations (see for example Linton & McIver [2, §5.1.3]). The product factorisation for Q(s)
comes from Cauchy’s integral formula (see Noble [26, pp. 13]) and takes the form

Q+(s) = exp

{
1

2πi

∫̂∫
log(Q(z))

z − s
dz

}
, (36a)

Q−(s) = exp

{
−1

2πi

∫
_
∫

log(Q(z))

z − s
dz

}
, (36b)

where ^ represents a path traversing beneath z = s, and conversely _ above z = s, from
−∞ to ∞. More specifically, starting from Cauchy’s integral formula with a closed contour
centred about the point z = s, where s is any point of analyticity of the function, we take this
point to lie inside the region in which the Wiener–Hopf equation (29) is defined (an infinite
strip including the real line, but indented below (above) any isolated singularities on the
positive (negative) real line). This closed contour can then be extended to z = ±∞ inside
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this region of analyticity, which yields two infinite contours, one passing below s, denoted
by ^, and the other above, denoted by _.

Thus, we have that K(s) = K+(s)K−(s) where

K+(s) = L+(s)Q+(s) and K−(s) = L−(s)Q−(s). (37)

In practical terms, only one of the above need be evaluated due to the symmetries L+(−s) =
L−(s) and Q+(−s) = Q−(s), i.e., K+(−s) = K−(s). Returning to the Wiener–Hopf equation
(29) we introduce the decomposition for K(s) to obtain

K+(s)A+(s) =
P (s)

K−(s)
+ (s4 − µ4)

B−(s)

K−(s)
+

i

(s+ `)+

1

K−(s)
, (38a)

where the final term on the right-hand side of (38a) is a product of two functions, one regular
in the upper- and the other regular in the lower-half plane. We now introduce the additive
decomposition

i

(s+ `)+

1

K−(s)
=

i

(s+ `)+

(
1

K−(s)
− 1

K−(−`)

)
+

i

(s+ `)+

1

K−(−`)
, (38b)

where the first term on the left-hand side has a removable pole at s = −` and thus is regular.
Consequently, we obtain the form

K+(s)A+(s)− i

(s+ `)+

1

K−(−`)
=

P (s)

K−(s)
+(s4−µ4)

B−(s)

K−(s)
+

i

(s+ `)+

(
1

K−(s)
− 1

K−(−`)

)
,

(38c)
where the left-hand side of (38c) is analytic in the upper-half plane, and the right-hand side
is analytic in the lower half plane.

After examining the asymptotic forms of both the left- and right-hand sides of (38c)
above, i.e., after using the asymptotic forms (7), (8), and (31), we find from Crighton et
al. [30, pp 151] that

lim
|s|→∞

A+(s) ∼ lim
x→0

∫ ∞
0

φs(x,−d)
∣∣+
− eisx dx ∼ 1

s3/2
, (39a)

lim
|s|→∞

B−(s) ∼ lim
x→0

∫ 0

−∞
∂zφ

s(x,−d) eisx dx ∼ 1

s1/2
, (39b)

lim
|s|→∞

K±(s) ∼ s5/2, (39c)

and using an extended form of Liouville’s theorem (see Noble [26, pp. 6]) yields

K+(s)A+(s)− i

(s+ `)+

1

K−(−`)
= J(s), (40a)

P (s)

K−(s)
+ (s4 − µ4)

B−(s)

K−(s)
+

i

(s+ `)+

(
1

K−(s)
− 1

K−(−`)

)
= J(s), (40b)

where J(s) = ps+ q and both p and q are unknown. In order to construct the exact solution
for the system above, we must determine the six unknown parameters that feature in the
system above (i.e., the four unknowns from P (s) and two unknowns from J(s)).

10



4 Determining the polynomials P(s) and J(s)

Recall from the half-range Fourier transform of the plate operator (28b) that we obtain the
entire function

P (s) = (i∂zφ
s
0)s

3 − (∂x∂zφ
s
0)s

2 − (i∂2x∂zφ
s
0)s+ (∂3x∂zφ

s
0) (41)

where subscript zero notation denotes the quantity as x → 0−. Any two of these constants
are specified by the boundary conditions imposed at the plate edge, for example, the most
common boundary conditions take the form

clamped edge (w = 0, ∂xw = 0) : ∂zφ
s
0 =

1

`4 − µ4
, ∂x∂zφ

s
0 =

i`

`4 − µ4
, (42a)

simply supported edge (w = 0,M = 0) : ∂zφ
s
0 =

1

`4 − µ4
, ∂2x∂zφ

s
0 = − `2

`4 − µ4
, (42b)

free edge (M = 0, V = 0) : ∂2x∂zφ
s
0 = − `2

`4 − µ4
, ∂3x∂zφ

s
0 = − i`3

`4 − µ4
,

(42c)

where M = −D∂2xw is the bending moment and V = −D∂3xw the Kelvin–Kirchhoff edge
reaction of a thin elastic plate. Note that the absence of a variation in the y direction leads
to the simplified forms above [31, cf. pp. 4].

However, after imposing the boundary condition at the edge, four unknown constants
still remain. Following Cannell [22] we obtain two conditions by rearranging the second
equation in the partitioned Wiener–Hopf system (40b) above to read

B−(s) =
K−(s)

(s4 − µ4)

[
ps+ q − i

(s+ `)+

(
1

K−(s)
− 1

K−(−`)

)
− P (s)

K−(s)

]
. (43)

Since B−(s) must be analytic in the lower-half plane, it follows from (43) that[
ps+ q − i

(s+ `)+

(
1

K−(s)
− 1

K−(−`)

)
− P (s)

K−(s)

]
= 0, (44)

when s = −µ and s = −iµ. For reference we designate the upper- and lower-half planes in
Fig. 2.

Two further conditions are obtained by taking the half-range Fourier transform of the
forced plate equation (15b), to obtain

M+(s) =
1

(s4 − µ4)

[
P (s) +

i

(s+ `)+
− βA+(s)

]
, (45)

after using the decomposition for ∂zφ
s in (24). Since M+(s) must be analytic in the upper-

half plane, it follows that[
P (s) +

i

(s+ `)+
− βA+(s)

]
=

[
P (s) +

i

(s+ `)+
− β

K+(s)

(
ps+ q +

i

(s+ `)+

1

K−(−`)

)]
= 0,

(46)
when s = µ and s = iµ. Closed-form expressions for the unknown constants are not given
here as they are quite lengthy. Thus, the Wiener–Hopf system has now been solved to give
the functions A+(s), B−(s), and M+(s) explicitly.
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Figure 2: Illustrative partition of complex plane into upper- and lower- half spaces (U+ shaded in
blue and U− in yellow respectively), for some function with simple poles at s = ±1 and s = ±i.
Dashed lines outline an analytic continuation of these two domains to form a strip of analyticity
enclosing the real line at s = ±∞. As we deform the partition (to have an interface along the real
line) it indents below (above) any isolated singularities on the positive (negative) real line to ensure
Sommerfeld radiation conditions are met when computing inverse Fourier transforms.

5 Solution representation

Having determined the necessary polynomials above, we return to (40a) to write

A+(s) =
1

K+(s)

(
ps+ q +

i

(s+ `)+

1

K−(−`)

)
. (47)

Using the relationship between HL(s) and A+(s) in (25), the relationship between GU(s) and
HL(s) in (22), the general solution for Ψ(s, z) in (18) is now completely prescribed. Hence,
we write the total field in x < 0 as

Aφ(x, z) = φinc(x, z) +
1

2π

∮
U+

Ψ(s, z) e−isx ds, (48a)

where the integral indicates a closure in the upper-half plane, which is evaluated as

Aφ(x, z) = φinc(x, z)+
∑
j

e−is
R
j x


τU(sRj )

[
cosh(sRj z) +

α

sRj
sinh(sRj z)

]
for − d < z ≤ 0,

τL(sRj ) cosh(sRj (z + h)) for − h ≤ z < −d,
(48b)

in which

τU(s) =
i

K+(s)

(
ps+ q +

i

(s+ `)+

1

K−(−`)

)
s sinh(sc)

(1− αs) sinh(sh) + s2 cosh(sh)
, (48c)

τL(s) =
i

K+(s)

(
ps+ q +

i

(s+ `)+

1

K−(−`)

)
η(s)

(1− αs) sinh(sh) + s2 cosh(sh)
, (48d)

and sRj denote solutions to s sinh(sh) − α cosh(sh) = 0 in U+, which are all simple poles.
Since there is no discontinuity for x < 0 the above expression can be simplified to

Aφ(x, z) = φinc(x, z) +
∑
j

e−is
R
j x τL(sRj ) cosh(sRj (z + h)) for − h ≤ z < 0. (49)

12



Likewise the total field in x > 0 takes the form

Aφ(x, z) = φinc(x, z) +
1

2π

∮
U−

Ψ(s, z) e−isx ds, (50)

where the integral is closed in the lower-half plane, which is evaluated via

Aφ(x, z) =
∑
j

eis
T
j x


κU(−sTj )

[
cosh(sTj z) +

α

sTj
sinh(sTj z)

]
for − d < z ≤ 0,

κL(−sTj ) cosh(sTj (z + h)) for − h ≤ z < −d,

(51)

in which

κU(s) = −iK−(s)

(
(ps+ q)(s+ `)+ +

i

K−(−`)

)
s sinh(sc)

∂sy(s)
, (52)

κL(s) = −iK−(s)

(
(ps+ q)(s+ `)+ +

i

K−(−`)

)
η(s)

∂sy(s)
, (53)

and
y(s) =

[
s(s4 − µ4) sinh(sc)η(s) + β {s sinh(sh)− α cosh(sh)}

]
(s+ `)+. (54)

In the above, s = −sTj are solutions to y(s) = 0 in U−, excluding sTj = `, and are all simple
poles. Note that the sign of the residue is due to the clockwise orientation taken in the
lower-half plane. Furthermore, both sums are evaluated over both real, strictly imaginary,
and complex-valued roots, to ensure that the evanescent field contributions are included,
and the entire field is appropriately reconstructed close to the plate edge.

5.1 Conservation of energy relation

As outlined in existing works [23, 13, 14] we use Green’s second identity with the fluid
potential and its conjugate to obtain the energy-balance expression

|A|2Im
{∮

∂V
φ∗∂nφ dS

}
= 0, (55)

where V = {{−xW < x < xW} × {−h < z < 0}} \Γp. For xW large, it follows that only
propagating waves are present, i.e., the incident and reflected surface wave on the left

lim
x→−∞

Aφ(x, z) ∼ φinc(x, z) + τL(`) cosh(`(z + h)) e−i`x, for − h ≤ z < 0, (56a)

and both the transmitted surface wave and coupled plate-surface wave on the right

lim
x→∞
Aφ(x, z) ∼



κU(−k1)
[
cosh(k1z) +

α

k1
sinh(k1z)

]
eik1x

+κU(−k2)
[
cosh(k2z) +

α

k2
sinh(k2z)

]
eik2x for − d < z ≤ 0,

κL(−k1) cosh(k1(z + h)) eik1x

+κL(−k2) cosh(k2(z + h)) eik2x for − h ≤ z < −d,
(56b)
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where τU,L and κU,L are residue contributions to the amplitudes, and kj = sTj for convenience.
After imposing the plate boundary conditions at the edge we obtain the energy-balance
relation

− `
∫ 0

−h

cosh2(`(z + h))

`2(`4 − µ4)2 sinh2(`c)
dz + `|τL` |2

∫ 0

−h
[cosh(`(z + h))]2 dz

+ k1|κU1 |2
∫ 0

−d

[
cosh(k1z) +

α

k1
sinh(k1z)

]2
dz

+ k2|κU2 |2
∫ 0

−d

[
cosh(k2z) +

α

k2
sinh(k2z)

]2
dz + k1|κL1 |2

∫ −d
−h

cosh2(k1(z + h)) dz

+ k2|κL2 |2
∫ −d
−h

cosh2(k2(z + h)) dz − 2

β

[
|κL1 |2k51 sinh2(k1c) + |κL2 |2k52 sinh2(k2c)

]
= 0, (57)

where κL1,2 = κL(−k1,2) refer to the two waves propagating towards x → ∞ and the final
term arises from integration over the plate, i.e.,

Im

{∫ xW

0

(φ(x,−d)
∣∣+
−)∗∂zφ(x,−d) dx

}
= − 1

β
Im

{∫ xW

0

(∂4x∂zφ(x,−d))∗∂zφ(x,−d) dx

}
= − 1

β
Im
{[(

∂3x∂zφ(x,−d)
)∗
∂zφ(x,−d)−

(
∂2x∂zφ(x,−d)

)∗
∂x∂zφ(x,−d)

]xW

0

}
= − 2

β

[
|κL1 |2k51 sinh2(k1c) + |κL2 |2k52 sinh2(k2c)

]
. (58)

The energy-balance equation (57) may be expressed in a more familiar form through the
scaling

A =
− cosh(`h))

`(`4 − µ4) sinh(`c)
, (59)

from which the asymptotic form of the potential is

φ(x, 0) ∼

{
ei`x +Re−i`x, x→ −∞
T1e

ik1x + T2e
ik2x, x→∞

(60)

where the reflection coefficient is given by

R = −τL(`)`(`4 − µ4) sinh(`c),

and

Tj = −`(`
4 − µ4) sinh(`c)

cosh(`h))
κU(−kj).

It is then clear that the energy-balance equation can be written in terms of reflection and
transmission coefficients and it is equivalent to that given in ul-Hassan et al. [13, Eq. (C.10)].
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Figure 3: The reflection coefficient (black solid line), high wavenumber transmitted mode (red
dot-dashed line) and low wavenumber transmitted mode (blue dashed line) for a submerged elastic
plate where µ = α× 10−3, β = α× 10−2, h = 1.5 and d = 0.5. Figure (a) corresponds to clamped
edge and (b) free edge conditions at the plate edge. We superpose circles corresponding to results
obtained using the eigenfunction matching method [13].

5.2 Numerical Examples

In this section, we compute the response of a submerged elastic plate configuration following
the procedure outlined in the preceding sections. We also present the total reflection and
total transmission coefficients over a wide frequency range as a benchmark for numerical
validation in future studies. The numerical solution was validated by the energy-balance
relation and by comparison with the previous solution via eigenfunction matching [13].

In this section we rescale the incident field (13) so that its potential amplitude is unity
at the free surface. Therefore we set A according to equation (59). The scattered far field
surface potential consists of a reflected wave of the form Re−i`x for large negative x and
two transmitted waves (as in equation (60)). The two transmitted waves have different
wavenumbers and we denote them by the high wavenumber and low wavenumber mode.
The surface potential in the far field for large positive x is T1e

ik1x + T2e
ik2x. Note here that

`, k1, and k2 are the only purely real solutions. These two far-field transmitted waves are
analogous to the two waves found for a stratified fluid (the surface and internal or interface
wave). In Figure 3 we choose h = 1.5 and d = 0.5 which correspond to the values chosen by
ul-Hassan et al. [13]. We express the solution in terms of α = ω2/g and set µ = α×10−3 and
β = α×10−2. Figure 3 shows the absolute value of the reflection and transmission coefficients
as a function of α. We consider the two edge conditions, clamped and free. The free edge
condition problem has a significantly lower reflection over this frequency range. We also
see that for both low and high frequencies, the transmission becomes unity. For reference,
we also superpose results obtained using eigenfunction matching (as circular points), which
match results for the reflection coefficient presented in Figures 3 and 4 of ul-Hassan et al. [13].

For the remaining figures, we choose h = 2 and d = 0.5, µ = α× 10−2 and β = α× 10−1.
We extend the monochromatic plane–wave solution to consider a time-dependent Gaussian
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wave pulse. We consider the surface displacement (η), which we write as

η(x, t) = Re

{∫ ∞
0

f̂(k) ∂zΦ(x, z;ω(k))|z=0 e−iω(k)dk

}
,

where f̂(k) = 5/(6
√
π) exp((k−k0)2/25) is a Gaussian centred at k0 = 0.5 where the 5/(6

√
π)

factor is arbitrary, but chosen so that the maximum pulse displacement, if the submerged
plate was absent, is 1/6. We found this value to give the best illustration of the fluid and plate
motion. We choose the scaling factor A so that the normal derivative has unit amplitude at
the free surface

A =
− sinh(`h)

(`4 − µ4) sinh(`c)
.

Similarly, the displacement of the submerged plate is given by

wb(x, t) = Re

{∫ ∞
0

f̂(k) ∂zΦ(x, z;ω(k))|z=−d e−iω(k)dk

}
, x > 0.

The solution then appears as a reflected and two transmitted pulse each of which is travelling
at a different group speed as can be seen in Figure 4 and the movie which can be found in
the Supplementary Material. Note that we superpose the displacement of the plate relative
to the rest position at z = −d for illustrative purposes.

6 Extension to submerged poroelastic plates

Next, we construct a poroelastic thin plate by drilling many small holes into an otherwise
uniform thin elastic plate, for example, a Kirchhoff–Love plate described by (2). Porous
plates are widely used in subsea applications as they provide two mechanisms for impacting
wave energy in a fluid medium: through the excitation of flexural modes and dissipative
processes when transporting wave energy through the pores. In the regime when all length
scales are deeply subwavelength we obtain the effective plate equation [1, §5.4.2]

D∆2
‖wb(x, y; t) + ρhP ∂

2
twb(x, y; t) = −q, (61)

where D and ρ are the effective stiffness and density, respectively, and take the form

D =

(
1− 2fν

1− ν

)
D, and ρ = (1− f)ρP, (62)

in the small porosity limit, where f denotes the porosity. Due to the presence of the narrow
fluid channels, the kinematic condition (4) is extended by Darcy’s law and takes the form

∂zΦ(x, y,−d; t) = ∂twb(x, y; t)−KP/(µFhP)P
∣∣+
−, (63)

where KP is the permeability of the plate (with Re(KP) > 0 related to dissipative effects
and Im(KP) related to inertial effects in the flow) and µF is the dynamic viscosity. The

pressure jump P
∣∣+
− is given by the linearised Bernoulli form (3). We refer to Tuck [32, § V.D]
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Figure 4: The time-dependent motion of the fluid surface (η) in blue and submerged elastic plate
(wb), relative to its rest position, in black with clamped leading edge for a Gaussian incident wave
pulse for parameter values µ = α × 10−2 and β = α × 10−1. The full animation can be found in
movie 1 in the Supplementary Material.
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Figure 5: As in Figure 4 except with free edge conditions applied at the plate edge. The full
animation can be found in movie 2 in the Supplementary Material.
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for further details and a detailed discussion of this model. Substituting the new kinematic
condition (63) into the effective plate equation (61) and removing y-dependence as before,
we obtain the poroelastic plate equation

(∂4x − µ4)(∂zφ(x, z) + τφ(x, z)
∣∣+
−) + βφ(x, z)

∣∣+
− = 0, for z = −d and x > 0, (64)

where µ4 = ρhPω
2/D, τ = iωρFKP/(µFhP), and β = ω2ρF/D are known constants. Hence,

we solve the system (5)–(8) once more, replacing the elastic plate equation (6b) with (64). In
the limit of zero permeability KP → 0 we recover the system specified earlier. As discussed
in Jaworski & Peake [16], the effective plate equation above is a lowest-order approximation
to a fully coupled poroelastic plate system, such as those described in Theodorakopoulos &
Beskos [33].

We now proceed as before and renormalise the modified incident potential as

φinc(x, z) =
− cosh(`(z + h))

`(`4 − µ4) sinh(`c)
ei`x, (65)

admitting the poroelastic plate equation

(∂4x − µ4)(∂zφ
s(x, z) + τφs(x, z)

∣∣+
−) + βφs(x, z)

∣∣+
− = ei`x, for z = −d and x > 0. (66)

The Fourier transform of the poroelastic plate operator gives the Wiener–Hopf equation

K(s)A+(s) = P (s) + (s4 − µ4)B−(s) +
i

(s+ `)+
, (67)

which is analogous to (29), where

K(s) = s(s4 − µ4)

[
sinh(sc)η(s)

sinh(sc)ξ(s)− cosh(sc)η(s)

]
+ τ(s4 − µ4) + β. (68)

The decomposition of K(s) = L(s)Q(s) proceeds identically to before with

L(s) = −1

2
s(s4 − µ4)

cosh(πs)

sinh(πs)
, (69a)

Q(s) = 2 tanh(πs)

[
sinh(cs)η(s)

α cosh(sh)− s sinh(sh)
− β

s(s4 − µ4)
− τ

s

]
. (69b)

As before, we obtain the system

K
+

(s)A+(s)− i

(s+ `)+

1

K
−

(−`)
= J(s), (70a)

P (s)

K
−

(s)
+ (s4 − µ4)

B−(s)

K
−

(s)
+

i

(s+ `)+

(
1

K
−

(s)
− 1

K
−

(−`)

)
= J(s), (70b)

where J(s) = ps+ q and both p and q are unknown. To determine the polynomial

P (s) = i(∂zφ
s
0+τφs

0

∣∣+
−)s3−(∂x∂zφ

s
0+τ∂xφ

s
0

∣∣+
−)s2− i(∂2x∂zφ

s
0+τ∂2xφ

s
0

∣∣+
−)s+(∂3x∂zφ

s
0+τ∂3xφ

s
0

∣∣+
−),

(71)
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where subscript zero notation denotes, for example,

∂zφ
s
0 + τφs

0

∣∣+
− = lim

x→0

{
∂zφ

s(x,−d) + τφs(x,−d)
∣∣+
−

}
, (72)

we substitute the kinematic condition (63) into the boundary conditions for the plate to
obtain

clamped edge : ∂zφ
s
0 + τφs

0

∣∣+
− =

1

`4 − µ4 , ∂x∂zφ
s
0 + τ∂xφ

s
0

∣∣+
− =

i`

`4 − µ4 , (73a)

simply supported edge : ∂zφ
s
0 + τφs

0

∣∣+
− =

1

`4 − µ4 , ∂2x∂zφ
s
0 + τ∂2xφ

s
0

∣∣+
− = − `2

`4 − µ4 , (73b)

free edge : ∂2x∂zφ
s
0 + τ∂2xφ

s
0

∣∣+
− = − `2

`4 − µ4 , ∂3x∂zφ
s
0 + τ∂3xφ

s
0

∣∣+
− = − i`3

`4 − µ4 ,

(73c)

which are analogous to the conditions for an elastic plate (42). At this stage, there are four
unknown parameters from P (s) and two unknown parameters from J(s). Two conditions
are given by the choice of boundary condition at the plate edge, two conditions are obtained
by requiring analyticity in the lower-half plane for (70b), i.e., that[

ps+ q − i

(s+ `)+

(
1

K
−

(s)
− 1

K
−

(−`)

)
− P (s)

K
−

(s)

]
= 0, (74)

when s = −µ and s = −iµ. Two further conditions are obtained by taking the half-range
Fourier transform of the forced poroelastic plate equation (66) which requires that[

P (s) +
i

(s+ `)+
− 1

K
−

(−`)K+
(s)

{
τ(s4 − µ4) + β

}(
ps+ q +

i

(s+ `)+

)]
= 0, (75)

when s = µ and s = iµ. With these six parameters now determined, the Wiener–Hopf solu-
tion for a submerged poroelastic plate yields the two functions A+(s) and B−(s) explicitly.

6.1 Solution representation

Having determined the necessary polynomials above, we return to (70a) to write

A+(s) =
1

K
+

(s)

(
ps+ q +

i

(s+ `)+

1

K
−

(−`)

)
. (76)

Using the relationship between HL(s) and A+(s) in (25), the relationship between GU(s)
and HL(s) in (22), the general solution for Ψ(s, z) in (18) is now completely prescribed for
a poroelastic plate. The total field for x < 0 is defined as before but is now evaluated as

Aφ(x, z) = φinc(x, z)+
∑
j

e−is
R
j x


τU(sRj )

[
cosh(sRj z) +

α

sRj
sinh(sRj z)

]
for − d < z ≤ 0

τL(sRj ) cosh(sRj (z + h)) for − h ≤ z < −d

,

(77a)
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where

τU(s) =
i

K
+

(s)

(
ps+ q +

i

(s+ `)+

1

K
−

(−`)

)
s sinh(sc)

(1− αs) sinh(sh) + s2 cosh(sh)
, (77b)

τL(s) =
i

K
+

(s)

(
ps+ q +

i

(s+ `)+

1

K
−

(−`)

)
η(s)

(1− αs) sinh(sh) + s2 cosh(sh)
, (77c)

and sRj denote solutions to s sinh(sh) − α cosh(sh) = 0 in U+, which are all simple. Note
those zeros are identical to that found previously, but that the field amplitudes now differ.
Since there is no discontinuity for x < 0 the above expression can be simplified to

Aφ(x, z) = φinc(x, z) +
∑
j

e−is
R
j x τL(sRj ) cosh(sRj (z + h)) for − h ≤ z < 0. (78)

Likewise the total field for x > 0 is evaluated via

Aφ(x, z) =
∑
j

eis
T
j x


κU(−sTj )

[
cosh(sTj z) +

α

sTj
sinh(sTj z)

]
for − d < z ≤ 0

κL(−sTj ) cosh(sTj (z + h)) for − h ≤ z < −d

, (79)

where

κU(s) = −iK
−

(s)

(
(ps+ q)(s+ `)+ +

i

K
−

(−`)

)
s sinh(sc)

∂sy(s)
, (80)

κL(s) = −iK
−

(s)

(
(ps+ q)(s+ `)+ +

i

K
−

(−`)

)
η(s)

∂sy(s)
, (81)

and

y(s) =
[
s(s4 − µ4) sinh(sc)η(s) +

{
β + τ(s4 − µ4)

}
{s sinh(sh)− α cosh(sh)}

]
(s+ `)+.

(82)
In the above, s = −sTj are solutions to y(s) = 0 in U−, excluding sTj = `, and are all simple.

6.2 Conservation of energy

Recalling the earlier result (55), we remark that the final integral describing the work done
by the fluid on the plate no longer takes the form given in (58) earlier, but must instead be
evaluated numerically in the limit as xW →∞, i.e., as

Im

{∫ ∞
0

(φ(x,−d)
∣∣+
−)∗∂zφ(x,−d) dx

}
, (83)

so that the total dissipative loss is captured.
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Figure 6: As in Figure 4 except with porosity τ = 0.01. Also superposed is the solution without
porosity (red dashed lines).The full animation can be found in movie 3 in the Supplementary
Material.

6.3 Numerical examples

In Figure 6 (and the movie file in the supplementary material) we show the effect of porosity
for the configuration considered in Figure 4. We set the non-dimensional porosity to be
τ = 0.01. The transmitted waves can be seen to decay as they propagate and we can
see that the lower wavenumber mode (which has longer wavelength) has significantly less
porosity-driven decay due to its closeness to the real line.
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7 Concluding remarks

We have presented a convenient Wiener–Hopf solution method for a submerged elastic plate
which we have extended to the case of a submerged porous plate. In contrast to earlier
works in this field, the Wiener–Hopf equation was derived in a direct manner, and the
splitting was accomplished by the use of a Cauchy-type integral. The solution method
was illustrated by computing the response of a submerged plate to incident Gaussian wave
pulses. We showed that the effect of porosity is to damp propagating waves and that the
short wavelength transmitted wave in the plate–fluid system is damped significantly more
than the long-wavelength transmitted wave.
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