80 research outputs found

    How does study quality affect the results of a diagnostic meta-analysis?

    Get PDF
    Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited

    Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping

    Get PDF
    Zinc (Zn) deficiency is a widespread problem which reduces yield and grain nutritive value in many cereal growing regions of the world. While there is considerable genetic variation in tolerance to Zn deficiency (also known as Zn efficiency), phenotypic selection is difficult and would benefit from the development of molecular markers. A doubled haploid population derived from a cross between the Zn inefficient genotype RAC875-2 and the moderately efficient genotype Cascades was screened in three experiments to identify QTL linked to growth under low Zn and with the concentrations of Zn and iron (Fe) in leaf tissue and in the grain. Two experiments were conducted under controlled conditions while the third examined the response to Zn in the field. QTL were identified using an improved method of analysis, whole genome average interval mapping. Shoot biomass and shoot Zn and Fe concentrations showed significant negative correlations, while there were significant genetic correlations between grain Zn and Fe concentrations. Shoot biomass, tissue and grain Zn concentrations were controlled by a number of genes, many with a minor effect. Depending on the traits and the site, the QTL accounted for 12–81% of the genetic variation. Most of the QTL linked to seedling growth under Zn deficiency and to Zn and Fe concentrations were associated with height genes with greater seedling biomass associated with lower Zn and Fe concentrations. Four QTL for grain Zn concentration and a single QTL for grain Fe concentration were also identified. A cluster of adjacent QTL related to the severity of symptoms of Zn deficiency, shoot Zn concentration and kernel weight was found on chromosome 4A and a cluster of QTL associated with shoot and grain Fe concentrations and kernel weight was found on chromosome 3D. These two regions appear promising areas for further work to develop markers for enhanced growth under low Zn and for Zn and Fe uptake. Although there was no significant difference between the parents, the grain Zn concentration ranged from 29 to 43 mg kg−1 within the population and four QTL associated with grain Zn concentration were identified. These were located on chromosomes 3D, 4B, 6B and 7A and they described 92% of the genetic variation. Each QTL had a relatively small effect on grain Zn concentration but combining the four high Zn alleles increased the grain Zn by 23%. While this illustrates the potential for pyramiding genes to improve grain Zn, breeding for increased grain Zn concentration requires identification of individual QTL with large effects, which in turn requires construction and testing of new mapping populations in the future

    The protocol of the Oslo Study of Clonidine in Elderly Patients with Delirium; LUCID:a randomised placebo-controlled trial

    Get PDF
    Background Delirium affects 15% of hospitalised patients and is linked with poor outcomes, yet few pharmacological treatment options exist. One hypothesis is that delirium may in part result from exaggerated and/or prolonged stress responses. Dexmedetomidine, a parenterally-administered alpha2-adrenergic receptor agonist which attenuates sympathetic nervous system activity, shows promise as treatment in ICU delirium. Clonidine exhibits similar pharmacodynamic properties and can be administered orally. We therefore wish to explore possible effects of clonidine upon the duration and severity of delirium in general medical inpatients. Methods/Design The Oslo Study of Clonidine in Elderly Patients with Delirium (LUCID) is a randomised, placebo-controlled, double-blinded, parallel group study with 4-month prospective follow-up. We will recruit 100 older medical inpatients with delirium or subsyndromal delirium in the acute geriatric ward. Participants will be randomised to oral clonidine or placebo until delirium free for 2 days (Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria), or after a maximum of 7 days treatment. Assessment of haemodynamics (blood pressure, heart rate and electrocardiogram) and delirium will be performed daily until discharge or a maximum of 7 days after end of treatment. The primary endpoint is the trajectory of delirium over time (measured by Memorial Delirium Assessment Scale). Secondary endpoints include the duration of delirium, use of rescue medication for delirium, pharmacokinetics and pharmacodynamics of clonidine, cognitive function after 4 months, length of hospital stay and need for institutionalisation. Discussion LUCID will explore the efficacy and safety of clonidine for delirium in older medical inpatients. Trial registration ClinicalTrials.gov NCT01956604 . EudraCT Number: 2013-000815-2

    Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND)

    Get PDF

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report
    corecore