2,738 research outputs found

    Dynamics of Kv1 Channel Transport in Axons

    Get PDF
    Concerted actions of various ion channels that are precisely targeted along axons are crucial for action potential initiation and propagation, and neurotransmitter release. However, the dynamics of channel protein transport in axons remain unknown. Here, using time-lapse imaging, we found fluorescently tagged Kv1.2 voltage-gated K+ channels (YFP-Kv1.2) moved bi-directionally in discrete puncta along hippocampal axons. Expressing Kvβ2, a Kv1 accessory subunit, markedly increased the velocity, the travel distance, and the percentage of moving time of these puncta in both anterograde and retrograde directions. Suppressing the Kvβ2-associated protein, plus-end binding protein EB1 or kinesin II/KIF3A, by siRNA, significantly decreased the velocity of YFP-Kv1.2 moving puncta in both directions. Kvβ2 mutants with disrupted either Kv1.2-Kvβ2 binding or Kvβ2-EB1 binding failed to increase the velocity of YFP-Kv1.2 puncta, confirming a central role of Kvβ2. Furthermore, fluorescently tagged Kv1.2 and Kvβ2 co-moved along axons. Surprisingly, when co-moving with Kv1.2 and Kvβ2, EB1 appeared to travel markedly faster than its plus-end tracking. Finally, using fission yeast S. pombe expressing YFP-fusion proteins as reference standards to calibrate our microscope, we estimated the numbers of YFP-Kv1.2 tetramers in axonal puncta. Taken together, our results suggest that proper amounts of Kv1 channels and their associated proteins are required for efficient transport of Kv1 channel proteins along axons

    The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome

    Get PDF
    BACKGROUND: The predictive role of many cytokines and adhesion molecules has not been studied systematically in acute respiratory distress syndrome (ARDS). METHODS: We measured prospectively tumour necrosis factor alpha (TNF-α), interleukin (IL)-1, soluble vascular adhesion molecule-1 (VCAM-1) and soluble intercellular adhesion molecule-1 (ICAM-1) in serum and bronchoalveolar lavage fluid (BALF) within 2 hours following admission, in 65 patients. The patients were divided into: those fulfilling the criteria for ARDS (n = 23, group A), those who were pre-ARDS and who developed ARDS within 24 hours (n = 14, group B), and those on pre-ARDS but who never developed ARDS (n = 28, group C). RESULTS: All the measured molecules were only found at higher levels in the serum of patients that died either with or without ARDS (P < 0.05 – P < 0.0001). Patients at risk exhibited a good negative predictive value (NPV) of the measured molecules for ARDS development both in their serum (89 to 95%) and BALF (86 to 92%) levels. In contrast to BALF, serum levels of IL-1 and adhesion molecules exhibited a good NPV (68 to 96%), sensitivity (60 to 88%) and survival specificity (74 to 96%) in all groups. All molecules in serum and BALF IL-1 were correlated with the APACHE II (P < 0.05 – P < 0.0001). Serum and BALF IL-1 as well as BALF TNF-α were negatively correlated to PaO(2)/FiO(2) (all P < 0.05). CONCLUSIONS: The studied molecules have good NPV for ARDS development both in serum and BALF. Serum rather than BALF levels seem to be related to outcome

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film

    Effects of cyclooxygenase-1 and -2 gene disruption on Helicobacter pylori-induced gastric inflammation

    Get PDF
    Background. Cyclooxygenases (COXs) play important roles in inflammation and carcinogenesis. The present study aimed to determine the effects of COX-1 and COX-2 gene disruption on Helicobacter pylori-induced gastric inflammation. Methods. Wild-type (WT), COX-1 and COX-2 heterozygous (COX-1 +/- and COX-2 +/-), and homozygous COX-deficient (COX-1 -/- and COX-2 -/-) mice were inoculated with H. pylori strain TN2 and killed after 24 weeks of infection. Uninfected WT and COX-deficient mice were used as controls. Levels of gastric mucosal inflammation, epithelial cell proliferation and apoptosis, and cytokine expression were determined. Results. COX deficiency facilitated H. pylori-induced gastritis. In the presence of H. pylori infection, apoptosis was increased in both WT and COX-deficient mice, whereas cell proliferation was increased in WT and COX-1-deficient, but not in COX-2-deficient, mice. Tumor necrosis factor (TNF)-α and interleukin-10 mRNA expression was elevated in H. pylori-infected mice, but only TNF-α mRNA expression was further increased by COX deficiency. Prostaglandin E 2 levels were increased in infected WT and COX-2-deficient mice but were at very low levels in infected COX-1-deficient mice. Leukotriene (LT) B 4 and LTC 4 levels were increased to a similar extent in infected WT and COX-deficient mice. Conclusions. COX deficiency enhances H. pylori-induced gastritis, probably via TNF-α expression. COX-2, but not COX-1, deficiency suppresses H. pylori-induced cell proliferation. © 2006 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for Acute Respiratory Distress Syndrome

    Get PDF
    BACKGROUND: The predictive role of many cytokines has not been well defined in Acute Respiratory Distress Syndrome (ARDS). METHODS: We measured prospectively IL-4, IL-6, IL-6 receptor, IL-8, and IL-10, in the serum and bronchoalveolar lavage fluid (BALF) in 59 patients who were admitted to ICU in order to identify predictive factors for the course and outcome of ARDS. The patients were divided into three groups: those fulfilling the criteria for ARDS (n = 20, group A), those at risk for ARDS and developed ARDS within 48 hours (n = 12, group B), and those at risk for ARDS but never developed ARDS (n = 27, group C). RESULTS: An excellent negative predictive value for ARDS development was found for IL-6 in BALF and serum (100% and 95%, respectively). IL-8 in BALF and IL-8 and IL-10 serum levels were higher in non-survivors in all studied groups, and were associated with a high negative predictive value. A significant correlation was found between IL-8 and APACHE score (r = 0.60, p < 0.0001). Similarly, IL-6 and IL-6r were highly correlated with PaO2/FiO2 (r = -0.27, p < 0.05 and r = -0.55, p < 0.0001, respectively). CONCLUSIONS: BALF and serum levels of the studied cytokines on admission may provide valuable information for ARDS development in patients at risk, and outcome in patients either in ARDS or in at risk for ARDS

    The Ligand Binding Domain of GCNF Is Not Required for Repression of Pluripotency Genes in Mouse Fetal Ovarian Germ Cells

    Get PDF
    In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E) 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (2R01HG00257-20)National Human Genome Research Institute (U.S.) (2R01HG00257-20

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology

    Assessing the Effect of Piperacillin/Tazobactam on Hematological Parameters in Patients Admitted with Moderate or Severe Foot Infections

    Get PDF
    Introduction: Piperacillin/tazobactam is a commonly used antibiotic for the empirical treatment of severe diabetic foot infections. One of the most feared complications of this drug is the development of pancytopenia. The aim of this study was to determine whether the use of piperacillin/tazobactam caused any hematological changes in patients admitted with severe diabetes-related foot infections from a specialist multidisciplinary foot clinic. Specifically, looking at whether it caused anemia, leukopenia, neutropenia, or thrombocytopenia. Methods: A 1-year retrospective analysis of patients admitted to a tertiary care center for treatment of diabetes-related foot infection using piperacillin/tazobactam. Hematological indices, urea and electrolytes, and C-reactive protein (CRP) were recorded pretreatment, during treatment, and posttreatment. HbA1c, vitamin B12, folate, thyroid-stimulating hormone, and free thyroxin were also analyzed to exclude any potential confounders as a cause of pancytopenia. Results: A total of 154 patients were admitted between 1 January 2016 and 31 December 2016 who received piperacillin/tazobactam for severe diabetes-related foot infection. On admission, white cell count and CRP were raised and fell significantly within the first 48 h. Other hematological factors did not change. Five patients developed a mild pancytopenia, of which three were unexplained. Conclusion: In this relatively small cohort, pancytopenia did not occur. As such, piperacillin/tazobactam appeared to have a low risk of adverse hematological outcomes and remains the treatment of choice for severe diabetes-related foot infections
    • …
    corecore