130 research outputs found

    Melting heat transfer analysis on magnetohydrodynamics buoyancy convection in an enclosure : a numerical study

    Get PDF
    Therollof melting heat transfer on magnetohydrodynamic natural convection in a square enclosurewithheatingof the bottom wall is examinednumericallyin this article.The dimensionlessgoverning partial differential equations are transformed into vorticity and stream functionformulationand then solved using the finite difference method(FDM). The effects of thermal Rayleigh number(Ra), melting parameter(M) and Hartmann number(Ha) are illustrated graphically.With an increasing melting parameter and Rayleigh number, the rate of fluid flow and temperature gradients are seen to increase. And in the presence of magnetic field, the temperature gradient reduces and hence the conductionmechanism dominated for larger Ha. Greater heat transfer rate is observed in the case of uniform heating compared with non-uniform case. The average Nusselt number reduces with increasing magnetic parameterin the both cases of heating of bottom wall

    SVF-Net: Learning Deformable Image Registration Using Shape Matching

    Get PDF
    International audienceIn this paper, we propose an innovative approach for registration based on the deterministic prediction of the parameters from both images instead of the optimization of a energy criteria. The method relies on a fully convolutional network whose architecture consists of contracting layers to detect relevant features and a symmetric expanding path that matches them together and outputs the transformation parametriza-tion. Whereas convolutional networks have seen a widespread expansion and have been already applied to many medical imaging problems such as segmentation and classification, its application to registration has so far faced the challenge of defining ground truth data on which to train the algorithm. Here, we present a novel training strategy to build reference deformations which relies on the registration of segmented regions of interest. We apply this methodology to the problem of inter-patient heart registration and show an important improvement over a state of the art optimization based algorithm. Not only our method is more accurate but it is also faster-registration of two 3D-images taking less than 30ms second on a GPU-and more robust to outliers

    The state of ambient air quality in Pakistan—a review

    Get PDF
    Background and purpose: Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead. Methods: Air pollution studies in Pakistan published in both scientific journals and by the Government have been reviewed and the reported concentrations of PM, SO2, O3, CO, NO2, and Pb collated. A comparison of the levels of these air pollutants with the World Health Organization air quality guidelines was carried out. Results: Particulate matter was the most serious air pollutant in the country. NO2 has emerged as the second high-risk pollutant. The reported levels of PM, SO2, CO, NO2, and Pb were many times higher than the World Health Organization air quality guidelines. Only O3 concentrations were below the guidelines. Conclusions: The current state of air quality calls for immediate action to tackle the poor air quality. The establishment of ambient air quality standards, an extension of the continuous monitoring sites, and the development of emission control strategies are essential. © Springer-Verlag 2009

    Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety

    Get PDF
    Es reproducción del documento publicado en http://dx.doi.org/10.1186/1471-2474-9-52Background: To analyse available evidence on the efficacy and safety of anti-TNF alpha drugs (infliximab, etanercept and adalimumab) for treating rheumatoid arthritis (RA). Methods: We searched systematically for randomised controlled clinical trials on treatment of RA with anti-TNF alpha drugs, followed by a systematic review with metaanalysis. Trials were searched from MEDLINE, EMBASE and Cochrane Library databases. The American College of Rheumatology (ACR) efficacy response criteria were used. Safety parameters provided by the trials were also assessed. Positive and undesired effects were estimated using combined relative risks (RR), number needed to treat (NNT) and number needed to harm (NNH). Heterogeneity was evaluated by Cochrane's Q and I-2 statistics. Results: Thirteen trials (7087 patients) met the inclusion criteria. The combined RR to achieve a therapeutic response to treatment with recommended doses of any anti-TNF alpha drug was 1.81 (95% CI 1.43 - 2.29) with a NNT of 5 (5 - 6) for ACR20. NNT for ACR50 [5 (5 - 6)] and ACR70 [7 (7 - 9)] were similar. Overall therapeutic effects were also similar regardless of the specific anti-TNF alpha drug used and when higher than recommended doses were administered. However, lower than recommended doses elicited low ACR70 responses (NNT 15). Comparison of anti-TNF alpha drugs plus methotrexate (MTX) with MTX alone in patients with insufficient prior responses to MTX showed NNT values of 3 for ACR20, 4 for ACR50 and 8 for ACR70. Comparison of anti-TNF alpha drugs with placebo showed a similar pattern. Comparisons of anti-TNF alpha drugs plus MTX with MTX alone in patients with no previous resistance to MTX showed somewhat lower effects. Etanercept and adalimumab administered as monotherapy showed effects similar to those of MTX. Side effects were more common among patients receiving anti-TNF alpha drugs than controls (overall combined NNH 27). Patients receiving infliximab were more likely to drop out because of side effects (NNH 24) and to suffer severe side effects (NNH 31), infections (NNH 10) and infusion reactions (NNH 9). Patients receiving adalimumab were also more likely to drop out because of side effects (NNH 47) and to suffer injection site reactions (NNH 22). Patients receiving etanercept were less likely to drop out because of side effects (NNH for control versus etanercept 26) but more likely to experience injection site reactions (NNH 5). Conclusion: Anti-TNF alpha drugs are effective in RA patients, with apparently similar results irrespective of the drug administered. Doses other than those recommended are also beneficial. The main factor influencing therapeutic efficacy is the prior response to DMARD treatment. The effect of treatment with etanercept or adalimumab does not differ from that obtained with MTX. The published safety profile for etanercept is superior but the fact that no patients are treated with higher than recommended doses requires explanation

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century
    corecore