41 research outputs found

    Longitudinal study of middle east respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015

    Get PDF
    Two herds of dromedary camels were longitudinally sampled with nasal and rectal swabs and serum, between September 2014 and May 2015, and the samples were tested for Middle East Respiratory Syndrome (MERS) coronavirus RNA and antibodies. Evidence of MERS-CoV infection was confirmed in one herd on the basis of detection of virus RNA in nasal swabs from three camels and significant increases in the antibody titers from three others. The three viruses were genetically identical, thus indicating introduction of a single virus into this herd. There was evidence of reinfection of camels that were previously seropositive, thus suggesting that prior infection does not provide complete immunity from reinfection, a finding that is relevant to camel vaccination strategies as a means to prevent zoonotic transmission.published_or_final_versio

    MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia

    Get PDF
    A prospective study of a dromedary camel herd during the 2013–14 calving season showed Middle East respiratory syndrome coronavirus infection of calves and adults. Virus was isolated from the nose and feces but more frequently from the nose. Preexisting neutralizing antibody did not appear to protect against infection

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/

    Sparse evidence of MERS

    No full text

    Lack of Middle East Respiratory Syndrome Coronavirus Transmission from Infected Camels

    No full text
    To determine risk for Middle East respiratory syndrome coronavirus transmission from camels to humans, we tested serum from 191 persons with various levels of exposure to an infected dromedary herd. We found no serologic evidence of human infection, suggesting that zoonotic transmission of this virus from dromedaries is rare

    Dromedary Camels and the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    No full text
    Middle East respiratory syndrome coronavirus (MERS-CoV) is an existential threat to global public health. The virus has been repeatedly detected in dromedary camels (Camelus dromedarius). Adult animals in many countries in the Middle East as well as in North and East Africa showed high (>90%) seroprevalence to the virus. Middle East respiratory syndrome coronavirus isolated from dromedaries is genetically and phenotypically similar to viruses from humans. We summarize current understanding of the ecology of MERS-CoV in animals and transmission at the animal-human interface. We review aspects of husbandry, animal movements and trade and the use and consumption of camel dairy and meat products in the Middle East that may be relevant to the epidemiology of MERS. We also highlight the gaps in understanding the transmission of this virus in animals and from animals to humans
    corecore