239 research outputs found
Herschel Hi-GAL imaging of massive young stellar objects
We used Herschel Hi-GAL (Herschel infrared Galactic Plane survey) data to determine whether massive young stellar objects (MYSOs) are resolved at 70 μm and to study their envelope density distribution. Our analysis of three relatively isolated sources in the l = 30° and 59° Galactic fields show that the objects are partially resolved at 70 μm. The Herschel Hi-GAL survey data have a high scan velocity which makes unresolved and partially resolved sources appear elongated in the 70 μm images. We analysed the two scan directions separately and examine the intensity profile perpendicular to the scan direction. Spherically symmetric radiative transfer models with a power-law density distribution were used to study the circumstellar matter distribution. Single dish submm data were also included to study how different spatial information affects the fitted density distribution. The density distribution which best fits both the 70 μm intensity profile and spectral energy distribution has an average index of ∼0.5. This index is shallower than expected and is probably due to the dust emission from bipolar outflow cavity walls not accounted for in the spherical models. We conclude that 2D axisymmetric models and Herschel images at low scan speeds are needed to better constrain the matter distribution around MYSOs
A phase II study of active specific immunotherapy and5-FU/Leucovorin as adjuvant therapy for stage III colon carcinoma
Active specific immunotherapy, using vaccines with autologous tumour cells and BCG, significantly reduces the rate of tumour recurrence in stage II colon cancer patients, while no clinical benefit has yet been observed in stage III patients. Adjuvant treatment with 5-Fluorouracil/Leucovorin is now considered standard therapy for stage III colon carcinoma and results in an absolute survival benefit of approximately 10%. Yet, the 5-year overall survival rate of stage III colon cancer patients is only 40–50%. Combining chemotherapy and immunotherapy might improve prognosis for stage III patients, especially when considering that active specific immunotherapy and chemotherapy have shown synergistic effects in pre-clinical tumour models. We performed a phase II study with 56 patients, using the combination of active specific immunotherapy and chemotherapy as an adjuvant therapy in stage III colon cancer patients to assess the influence of 5-Fluorouracil/Leucovorin on anti-tumour immunity induced by autologous tumour cell vaccinations. Anti-tumour immunity was measured before and after chemotherapy by means of delayed type hypersensitivity reactions, taken 48 h after the third and the fourth vaccination. We also investigated the toxicity of this combined immuno-chemotherapy treatment. Delayed type hypersensitivity reactions before chemotherapy had a median size of 20.3 mm, while after chemotherapy delayed type hypersensitivity size was 18.4 mm (P=0.01), indicating that chemotherapy hardly affected anti-tumour immunity. The severity of ulcers at the BCG vaccination sites was comparable to previous studies. In 30% of the patients grade III or grade IV chemotherapy related toxicity was seen; this is comparable to what is normally observed after adjuvant chemotherapy alone. This study shows that the active specific immunotherapy-induced anti-tumour immune response is only minimally impaired by consecutive chemotherapy and that the combined treatment of stage III colon cancer patients with active specific immunotherapy and 5-Fluorouracil/Leucovorin does not cause unexpected toxicity
Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù
Membranes with the Same Ion Channel Populations but Different Excitabilities
Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels
Restored Agricultural Wetlands in central Iowa: Habitat Quality and Amphibian Response
Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape
Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging
Cardiovascular magnetic resonance (CMR) imaging provides highly accurate measurements of biventricular volumes and mass and is frequently used in the follow-up of patients with acquired and congenital heart disease (CHD). Data on reproducibility are limited in patients with CHD, while measurements should be reproducible, since CMR imaging has a main contribution to decision making and timing of (re)interventions. The aim of this study was to assess intra-observer and interobserver variability of biventricular function, volumes and mass in a heterogeneous group of patients with CHD using CMR imaging. Thirty-five patients with CHD (7–62 years) were included in this study. A short axis set was acquired using a steady-state free precession pulse sequence. Intra-observer and interobserver variability was assessed for left ventricular (LV) and right ventricular (RV) volumes, function and mass by calculating the coefficient of variability. Intra-observer variability was between 2.9 and 6.8% and interobserver variability was between 3.9 and 10.2%. Overall, variations were smallest for biventricular end-diastolic volume and highest for biventricular end-systolic volume. Intra-observer and interobserver variability of biventricular parameters assessed by CMR imaging is good for a heterogeneous group of patients with CHD. CMR imaging is an accurate and reproducible method and should allow adequate assessment of changes in ventricular size and global ventricular function
Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties
Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies
Harmonization guidelines for HLA-peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium
PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay.
EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis.
RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions.
CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures
A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000
Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection
- …