11 research outputs found

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Modulation of immune responses in mice to recombinant antigens from PE and PPE families of proteins of Mycobacterium tuberculosis by the Ribi adjuvant

    No full text
    Three proteins of PE and PPE families of Mycobacterium tuberculosis were evaluated for their ability to induce T cell responses in mice. To enhance immunity induced by protein immunization, we tested the efficacy of adjuvant Ribi (monophosphoryl lipid A+TDM), along with three proteins of the PE/PPE family. Balb/c mice were subcutaneously injected with recombinant proteins, encoded by Rv1818c, Rv3018c and Rv3812 genes of M. tuberculosis H37Rv, formulated with Ribi or IFA for comparative study. Sera from mice immunized with Ribi revealed an increase in the specific immunoglobulin G titers by twofold against Ribi than in mice immunized with IFA. Ribi also elicited stronger delayed-type hypersensitivity and cytotoxic T-lymphocyte activity against the recombinant proteins when compared with IFA. Antigen specific IgG subclass analysis showed that Ribi tends to facilitate IgG2a production, suggesting enhancement of predominant Th1 response which in turn may facilitate increased production of protective IFN-\gamma. Furthermore, Ribi preparation increased the number of T cells secreting IFN-\gamma. These results indicate that Ribi acts as an effective adjuvant for immune response to antigens of M. tuberculosis. For the first time, we demonstrate that Rv3018c, Rv1818c and Rv3812 proteins of PE/PPE family are T cell antigens with vaccine potential

    HLA-A*0201-restricted Cytotoxic T-cell Epitopes in Three PE/PPE Family Proteins of Mycobacterium tuberculosis

    No full text
    CD8+TCD8^+ T cells are thought to play an important role in protective immunity against tuberculosis. We report the identification of three peptides derived from Rv1818c, Rv3812 and Rv3018c proteins of Mycobacterium tuberculosis that bound to HLA-A*0201 molecules and their ability to induce in vitro T-cell response in peripheral blood lymphocytes from HLA-A*0201-positive healthy individuals (PPD+) and patients with TB. The peptide-specific cytotoxic T lymphocytes (CTL) generated were capable of recognizing peptide pulsed targets. Three 9-mer peptides bound with high affinity to HLA-A*0201 and displayed low dissociation rates of the bound peptide from HLA. Epitope-specific recognition was demonstrated by the release of perforin and γ-interferon. Overall, our results demonstrate the presence of HLA class I-restricted CD8+CD8^+ CTL against proteins from PE and PPE proteins of M. tuberculosis and identify epitopes that are strongly recognized by HLA-A*0201-restricted CD8+TCD8^+ T cells in humans. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis

    Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints.

    Get PDF
    Contains fulltext : 110619.pdf (publisher's version ) (Open Access)Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design
    corecore