626 research outputs found

    Estimating the Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography for High-Risk Smokers in Australia

    Get PDF
    Introduction Health economic evaluations of lung cancer screening with low-dose computed tomography (LDCT) that are underpinned by clinical outcomes are relatively few. Methods We assessed the cost-effectiveness of LDCT lung screening in Australia by applying Australian cost and survival data to the outcomes observed in the U.S. National Lung Screening Trial (NLST), in which a 20% lung cancer mortality benefit was demonstrated for three rounds of annual screening among high-risk smokers age 55 to 74 years. Screening-related costs were estimated from Medicare Benefits Schedule reimbursement rates (2015), lung cancer diagnosis and treatment costs from a 2012 Australian hospital–based study, lung cancer survival rates from the New South Wales Cancer Registry (2005–2009), and other-cause mortality from Australian life tables weighted by smoking status. The health utility outcomes, screening participation rates, and lung cancer rates were those observed in the NLST. Incremental cost effectiveness ratios (ICER) were calculated for a 10-year time horizon. Results The cost-effectiveness of LDCT lung screening was estimated at AU138,000(80138,000 (80% confidence interval: AU84,700–AU353,000)/lifeyeargainedandAU353,000)/life-year gained and AU233,000 (80% confidence interval: AU128,000AU128,000–AU1,110,000)/quality-adjusted life year (QALY) gained. The ICER was more favorable when LDCT screening impact on all-cause mortality was considered, even when the costs of incidental findings were also estimated in sensitivity analyses: AU157,000/QALYgained.ThiscanbecomparedtoanindicativewillingnesstopaythresholdinAustraliaofAU157,000/QALY gained. This can be compared to an indicative willingness-to-pay threshold in Australia of AU30,000 to AU$50,000/QALY. Conclusions LDCT lung screening using NLST selection and implementation criteria is unlikely to be cost-effective in Australia. Future economic evaluations should consider alternative screening eligibility criteria, intervals, nodule management, the impact and cost of new therapies, investigations of incidental findings, and incorporation of smoking cessation interventions

    Circadian Rhythms in Visual Responsiveness in the Behaviorally Arrhythmic Drosophila Clock Mutant ClkJrk

    Get PDF
    An organism's biological day is characterized by a pattern of anticipatory physiological and behavioral changes that are governed by circadian clocks to align with the 24-h cycling environment. Here, we used flash electroretinograms (ERGs) and steady-state visually evoked potentials (SSVEPs) to examine how visual responsiveness in wild-type Drosophila melanogaster and the circadian clock mutant ClkJrk varies over circadian time. We show that the ERG parameters of wild-type flies vary over the circadian day, with a higher luminance response during the subjective night. The SSVEP response that assesses contrast sensitivity also showed a time-of-day dependence, including 2 prominent peaks within a 24-h period and a maximal response at the end of the subjective day, indicating a tradeoff between luminance and contrast sensitivity. Moreover, the behaviorally arrhythmic ClkJrk mutants maintained a circadian profile in both luminance and contrast sensitivity, but unlike the wild-types, which show bimodal profiles in their visual response, ClkJrk flies show a weakening of the bimodal character, with visual responsiveness tending to peak once a day. We conclude that the ClkJrk mutation mainly affects 1 of 2 functionally coupled oscillators and that the visual system is partially separated from the locomotor circadian circuits that drive bouts of morning and evening activity. As light exposure is a major mechanism for entrainment, our work suggests that a detailed temporal analysis of electrophysiological responses is warranted to better identify the time window at which circadian rhythms are most receptive to light-induced phase shifting

    Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules

    Get PDF
    Background: Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties.<p></p> Methods: An in vitro multi-species biofilm containing <i>S. mitis, F. nucleatum, P. Gingivalis</i> and <i>A. Actinomycetemcomitans</i> was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level.<p></p> Results: CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA.<p></p> Conclusions: CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.<p></p&gt

    Gated Diffusion-controlled Reactions

    Get PDF
    The binding and active sites of proteins are often dynamically occluded by motion of the nearby polypeptide. A variety of theoretical and computational methods have been developed to predict rates of ligand binding and reactivity in such cases. Two general approaches exist, "protein centric" approaches that explicitly treat only the protein target, and more detailed dynamical simulation approaches in which target and ligand are both treated explicitly. This mini-review describes recent work in this area and some of the biological implications

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordGraphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 °C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements. Along with high sensitivity, TLG on PP shows not only the best response but also better transparency, mechanical stability, and washability compared to SEG. Temperature-dependent Raman analysis reveals that the temperature has no significant effect on the peak frequency of PP and expected effect on graphene in the demonstrated temperature range. The presented results demonstrate that these flexible, lightweight temperature sensors based on TLG with a negative TCR can be easily integrated in fabrics.European CommissionEngineering and Physical Sciences Research Council (EPSRC)University of ExeterPortuguese Foundation for Science and Technolog

    Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: a pilot study

    Get PDF
    BACKGROUND: Development of reliable and objective evaluation methods is required, particularly for natural and goal-oriented upper-extremity tasks. Three-dimensional imaging measurement techniques have turned out to be a powerful tool for a quantitative and qualitative assessment of multijoint movements. The purpose of this study was to develop and test a method of three-dimensional motion analysis for the activity "drinking from a glass" and describe the drinking task with kinematic variables in control subjects. METHODS: A protocol was developed for the drinking activity including the set-up of cameras and positions of the markers and the subject. The drinking task included reaching, forward transport with glass, drinking, back transport and returning the hand to the initial position. An optoelectronic system was used for the three-dimensional kinematic motion capture. Movement times, velocities, joint angles and interjoint coordination for shoulder and elbow were computed and analyzed for twenty control subjects. Test-retest consistency was evaluated for six subjects. RESULTS: The test protocol showed good consistency in test-retest. Phase definitions for the drinking task were defined and verified. Descriptive kinematic variables were obtained for movement times, positions, velocities and joint angles for shoulder and elbow joint. Interjoint coordination between shoulder and elbow joint in reaching phase showed a high correlation. CONCLUSION: This study provides a detailed description of the three-dimensional kinematic analysis of the drinking task. Our approach to investigate and analyze a goal-oriented daily activity has a great clinical potential. Consequently, the next step is to use and test this protocol on persons with impairments and disabilities from upper extremities

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm
    corecore