65 research outputs found

    Relationship of performance on the sensory organization test to landing characteristics

    Get PDF
    Background: Jump landing tasks have been used to assess landing characteristics and require significant sensorimotor feedback to maintain functional joint stability (FJS) throughout the task. Postural stability (PS) also requires significant sensorimotor feedback and control and would seemingly involve similar sensory feedback pathways. However, previous literature clarifying the relationship between these two processes, maintaining FJS and PS, is limited. Participants: 80 Special Tactics Operators Methods: PS was assessed using the Sensory Organization Test (SOT). SOT variables included: Composite, Somatosensory, Visual, Vestibular, and Preference scores. Landing characteristics were assessed using motion analysis and during a double-legged (DLSJ) and single-legged (SLSJ) stop jump task. Pearson’s correlation coefficients were calculated to assess the relationship between SOT scores and landing characteristics (α<.05) Results: For the DLSJ, significant correlations were found between: Composite and peak posterior ground reaction forces (-.257), Vestibular and peak knee abduction moment (-.237), and Preference and initial contact hip flexion (-.297), peak hip flexion (-.249). For the SLSJ, significant correlations were found between: Somatosensory and peak vertical ground reaction forces (-.246); Preference and initial contact hip flexion (-.295), peak hip flexion (-.262). Conclusions: The results indicate that the SOT may not be a sensitive enough tool to assess sensorimotor control in a healthy, athletic population

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Cost-Effectiveness of Interventions to Prevent Disability in Leprosy: A Systematic Review

    Get PDF
    Background: Prevention of disability (POD) is one of the key objectives of leprosy programmes. Recently, coverage and access have been identified as the priority issues in POD. Assessing the cost-effectiveness of POD interventions is highly relevant to understanding the barriers and opportunities to achieving universal coverage and access with limited resources. The purpose of this study was to systematically review the quality of existing cost-effectiveness evidence and discuss implications for future research and strategies to prevent disability in leprosy and other disabling conditions. Methodology/Principal Findings: We searched electronic databases (NHS EED, MEDLINE, EMBASE, and LILACS) and databases of ongoing trials (www.controlled-trials.com/mrct/, www.who.int/trialsearch). We checked reference lists and contacted experts for further relevant studies. We included studies that reported both cost and effectiveness outcomes of two or more alternative interventions to prevent disability in leprosy. We assessed the quality of the identified studies using a standard checklist for critical appraisal of economic evaluations of health care programmes. We found 66 citations to potentially relevant studies and three met our criteria. Two were randomised controlled trials (footwear, management of neuritis) and one was a generic model-based study (cost per DALY). Generally, the studies were small in size, reported inadequately all relevant costs, uncertainties in estimates, and issues of concern and were based on limited data sources. No cost-effectiveness data on self-care, which is a key strategy in POD, was found. Conclusion/Significance: Evidence for cost-effectiveness of POD interventions for leprosy is scarce. High quality research is needed to identify POD interventions that offer value for money where resources are very scarce, and to develop strategies aimed at available, affordable and sustainable quality POD services for leprosy. The findings are relevant for other chronically disabling conditions, such as lymphatic filariasis, Buruli ulcer and diabetes in developing countries

    Dynamic Allostery in the Methionine Repressor Revealed by Force Distribution Analysis

    Get PDF
    Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Randomised sham-controlled trial of transcutaneous electrical stimulation in obstructive sleep apnoea

    Get PDF
    Introduction Obstructive sleep apnoea (OSA) is characterised by a loss of neuromuscular tone of the upper airway dilator muscles while asleep. This study investigated the effectiveness of transcutaneous electrical stimulation in patients with OSA. Patients and methods This was a randomised, sham-controlled crossover trial using transcutaneous electrical stimulation of the upper airway dilator muscles in patients with confirmed OSA. Patients were randomly assigned to one night of sham stimulation and one night of active treatment. The primary outcome was the 4% oxygen desaturation index, responders were defined as patients with a reduction >25% in the oxygen desaturation index when compared with sham stimulation and/or with an index <5/hour in the active treatment night. Results In 36 patients (age mean 50.8 (SD 11.2) years, male/female 30/6, body mass index median 29.6 (IQR 26.9–34.9) kg/m2, Epworth Sleepiness Scale 10.5 (4.6) points, oxygen desaturation index median 25.7 (16.0–49.1)/hour, apnoea-hypopnoea index median 28.1 (19.0–57.0)/hour) the primary outcome measure improved when comparing sham stimulation (median 26.9 (17.5–39.5)/hour) with active treatment (median 19.5 (11.6–40.0)/hour; p=0.026), a modest reduction of the mean by 4.1 (95% CI −0.6 to 8.9)/hour. Secondary outcome parameters of patients' perception indicated that stimulation was well tolerated. Responders (47.2%) were predominantly from the mild-to-moderate OSA category. In this subgroup, the oxygen desaturation index was reduced by 10.0 (95% CI 3.9 to 16.0)/hour (p<0.001) and the apnoea-hypopnoea index was reduced by 9.1 (95% CI 2.0 to 16.2)/hour (p=0.004). Conclusion Transcutaneous electrical stimulation of the pharyngeal dilators during a single night in patients with OSA improves upper airway obstruction and is well tolerated

    The Health Shadow Price, β c

    No full text
    corecore