3,222 research outputs found

    Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration

    Get PDF
    Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al

    Damage to the prefrontal cortex increases utilitarian moral judgements

    Get PDF
    The psychological and neurobiological processes underlying moral judgement have been the focus of many recent empirical studies1–11. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion-related areas of the brain contribute to moral judgement. Here we show that six patients with focal bilateral damage to the ventromedial prefrontal cortex (VMPC), a brain region necessary for the normal generation of emotions and, in particular, social emotions12–14, produce an abnor- mally ‘utilitarian’ pattern of judgements on moral dilemmas that pit compelling considerations of aggregate welfare against highly emotionally aversive behaviours (for example, having to sacrifice one person’s life to save a number of other lives)7,8. In contrast, the VMPC patients’ judgements were normal in other classes of moral dilemmas. These findings indicate that, for a selective set of moral dilemmas, the VMPC is critical for normal judgements of right and wrong. The findings support a necessary role for emotion in the generation of those judgements

    A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework.</p> <p>Methods</p> <p>In the proposed algorithm, individuals are classified as either "informative" or "non-informative" with respect to genetic (co)variance components. The "non-informative" individuals are characterized by their Mendelian sampling deviations (deviance from the mid-parent mean) being completely confounded with a single residual on the underlying liability scale. For threshold models, residual variance on the underlying scale is not identifiable. Hence, variance of fully confounded Mendelian sampling deviations cannot be identified either, but can be inferred from the between-family variation. In the new algorithm, breeding values are sampled as in a standard animal model using the full relationship matrix, but genetic (co)variance components are inferred from the sampled breeding values and relationships between "informative" individuals (usually parents) only. The latter is analogous to a sire-dam model (in cases with no individual records on the parents).</p> <p>Results</p> <p>When applied to simulated data sets, the standard animal threshold model failed to produce useful results since samples of genetic variance always drifted towards infinity, while the new algorithm produced proper parameter estimates essentially identical to the results from a sire-dam model (given the fact that no individual records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model).</p> <p>Conclusions</p> <p>The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal threshold model analysis of binary traits with one observation per animal. Furthermore, the method considerably speeds up mixing properties of the Gibbs sampler with respect to genetic parameters, which would be an advantage of any linear or non-linear animal model.</p

    Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L)

    Get PDF
    This article introduces the new 5-level EQ-5D (EQ-5D-5L) health status measure. EQ-5D currently measures health using three levels of severity in five dimensions. A EuroQol Group task force was established to find ways of improving the instrument's sensitivity and reducing ceiling effects by increasing the number of severity levels. The study was performed in the United Kingdom and Spain. Severity labels for 5 levels in each dimension were identified using response scaling. Focus groups were used to investigate the face and content validity of the new versions, including hypothetical health states generated from those versions. Selecting labels at approximately the 25th, 50th, and 75th centiles produced two alternative 5-level versions. Focus group work showed a slight preference for the wording 'slight-moderate-severe' problems, with anchors of 'no problems' and 'unable to do' in the EQ-5D functional dimensions. Similar wording was used in the Pain/Discomfort and Anxiety/Depression dimensions. Hypothetical health states were well understood though participants stressed the need for the internal coherence of health states. A 5-level version of the EQ-5D has been developed by the EuroQol Group. Further testing is required to determine whether the new version improves sensitivity and reduces ceiling effects

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Microarray data analysis in neoadjuvant biomarker studies in estrogen receptor-positive breast cancer

    Get PDF
    Microarray data have been widely utilized to discover biomarkers predictive of response to endocrine therapy in estrogen receptor-positive breast cancer. Typically, these data have focused on analyses conducted on the diagnostic specimen. However, dynamic temporal changes in gene expression associated with treatment may deliver significant improvements to the current generation of predictive models. We present and discuss some statistical issues relevant to the paper by Taylor and colleagues, who conducted studies to model the prognostic potential of gene expression changes that occur after endocrine treatment

    Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder.

    Get PDF
    Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems. We use a quantum autoencoder in a compress-teleport-decompress manner and report the first demonstration with qutrits using an integrated photonic platform for future scalability. The key strategy is to compress the dimensionality of input states by erasing redundant information and recover the initial states after chip-to-chip teleportation. Unsupervised machine learning is applied to train the on-chip autoencoder, enabling the compression and teleportation of any state from a high-dimensional subspace. Unknown states are decompressed at a high fidelity (~0.971), obtaining a total teleportation fidelity of ~0.894. Subspace encodings hold great potential as they support enhanced noise robustness and increased coherence. Laying the groundwork for machine learning techniques in quantum systems, our scheme opens previously unidentified paths toward high-dimensional quantum computing and networking

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file
    corecore