83 research outputs found

    The association between age and telomere length is age‐dependent: Evidence for a threshold model of telomere length maintenance

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. Data availability statement: The data that supports the findings of this study are available in the Supporting Information material of this articleTelomere length and dynamics are commonly used biomarkers of somatic state, yet the role of telomeres underlying the aging process is still debated. Indeed, to date, empirical evidence for an association between age and telomere length is mixed. Here, we test if the age‐dependency of the association between age and telomere length can provide a potential explanation for the reported inconsistencies across studies. To this end, we quantified telomere length by telomere restriction fragment analysis in two groups of Japanese quail (Coturnix japonica) that differed in their age distribution. One group consisted of young adults only, whereas the second group consisted of adults across a wide range of ages. In the young adults group, there was a highly significant negative association between telomere length and age, whereas no association between age and telomere length was found in the all‐ages adults group. This difference between groups was not due to telomere length‐dependent selective disappearance. Our results shows that the association between telomere length and age is age‐dependent and suggest that the costs and benefits associated with telomere maintenance are dynamic across an individual's life course.European Union Horizon 2020Swiss National Science FoundationUniversity of Castilla‐ La ManchaThe Company of Biologists limite

    Reproductive strategies affect telomere dynamics across the life course

    Get PDF
    This is the author accepted manuscript. The final version is available from University of Chicago Press via the DOI in this record Data accessibility: All data and code associated with this article are available in the Dryad Digital Repository doi: 10.5061/dryad.h44j0zpk0Because parental care has a heritable basis, the benefits of receiving increased parental provisioning early in life are genetically linked to the costs of providing increased parental provisioning at adulthood. Reproductive strategies thus result in distinct cost-benefit syndromes across the life course that may shape individual health and ageing trajectories. Here we used an artificial selection approach in Japanese quail (Coturnix japonica) to test how reproductive strategies affect telomere length, a biomarker of somatic state, at different life stages. We show that males, but not females, from lines selected for low maternal investment (i.e. developing in a relatively small egg) had shorter telomeres at birth. These patterns were still weakly present at the end of the juvenile growth period. In contrast, significantly shorter telomeres were found in reproductively active adult birds from the high investment lines, suggesting that telomere attrition was accelerated in these individuals once they had become reproductively active. Our study shows that reproductive strategies differentially affect telomere dynamics across the life course, highlighting the role of cross-generational constraints in shaping individual ageing trajectories.European CommissionSwiss National Science Foundatio

    Weathering the storm: parental effort and experimental manipulation of stress hormones predict brood survival

    Get PDF
    BACKGROUND:Unpredictable and inclement weather is increasing in strength and frequency, challenging organisms to respond adaptively. One way in which animals respond to environmental challenges is through the secretion of glucocorticoid stress hormones. These hormones mobilize energy stores and suppress non-essential physiological and behavioral processes until the challenge passes. To investigate the effects of glucocorticoids on reproductive decisions, we experimentally increased corticosterone levels (the primary glucocorticoid in birds) in free-living female tree swallows, Tachycineta bicolor, during the chick-rearing stage. Due to an unprecedented cold and wet breeding season, 90% of the nests in our study population failed, which created a unique opportunity to test how challenging environmental conditions interact with the physiological mechanisms underlying life-history trade-offs.RESULTS:We found that exogenous corticosterone influenced the regulation of parental decisions in a context-dependent manner. Control and corticosterone-treated females had similar brood failure rates under unfavorable conditions (cold and rainy weather), but corticosterone treatment hastened brood mortality under more favorable conditions. Higher female nest provisioning rates prior to implantation were associated with increased probability of brood survival for treatment and control groups. However, higher pre-treatment male provisioning rates were associated with increased survival probability in the control group, but not the corticosterone-treated group.CONCLUSIONS:These findings reveal complex interactions between weather, female physiological state, and partner parental investment. Our results also demonstrate a causal relationship between corticosterone concentrations and individual reproductive behaviors, and point to a mechanism for why naturally disturbed populations, which experience multiple stressors, could be more susceptible and unable to respond adaptively to changing environmental conditions

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'

    Sex Differences in Sand Lizard Telomere Inheritance: Paternal Epigenetic Effects Increases Telomere Heritability and Offspring Survival

    Get PDF
    To date, the only estimate of the heritability of telomere length in wild populations comes from humans. Thus, there is a need for analysis of natural populations with respect to how telomeres evolve.Here, we show that telomere length is heritable in free-ranging sand lizards, Lacerta agilis. More importantly, heritability estimates analysed within, and contrasted between, the sexes are markedly different; son-sire heritability is much higher relative to daughter-dam heritability. We assess the effect of paternal age on Telomere Length (TL) and show that in this species, paternal age at conception is the best predictor of TL in sons. Neither paternal age per se at blood sampling for telomere screening, nor corresponding age in sons impact TL in sons. Processes maintaining telomere length are also associated with negative fitness effects, most notably by increasing the risk of cancer and show variation across different categories of individuals (e.g. males vs. females). We therefore tested whether TL influences offspring survival in their first year of life. Indeed such effects were present and independent of sex-biased offspring mortality and offspring malformations.TL show differences in sex-specific heritability with implications for differences between the sexes with respect to ongoing telomere selection. Paternal age influences the length of telomeres in sons and longer telomeres enhance offspring survival

    Early-life telomere dynamics differ between the sexes and predict growth in the barn swallow (Hirundo rustica)

    Get PDF
    Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual's siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio

    A Novel Tandem Mass Spectrometry Method for Rapid Confirmation of Medium- and Very Long-Chain acyl-CoA Dehydrogenase Deficiency in Newborns

    Get PDF
    BACKGROUND:Newborn screening for medium- and very long-chain acyl-CoA dehydrogenase (MCAD and VLCAD, respectively) deficiency, using acylcarnitine profiling with tandem mass spectrometry, has increased the number of patients with fatty acid oxidation disorders due to the identification of additional milder, and so far silent, phenotypes. However, especially for VLCADD, the acylcarnitine profile can not constitute the sole parameter in order to reliably confirm disease. Therefore, we developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method to rapidly determine both MCAD- and/or VLCAD-activity in human lymphocytes in order to confirm diagnosis. METHODOLOGY:LC-MS/MS was used to measure MCAD- or VLCAD-catalyzed production of enoyl-CoA and hydroxyacyl-CoA, in human lymphocytes. PRINCIPAL FINDINGS:VLCAD activity in controls was 6.95+/-0.42 mU/mg (range 1.95 to 11.91 mU/mg). Residual VLCAD activity of 4 patients with confirmed VLCAD-deficiency was between 0.3 and 1.1%. Heterozygous ACADVL mutation carriers showed residual VLCAD activities of 23.7 to 54.2%. MCAD activity in controls was 2.38+/-0.18 mU/mg. In total, 28 patients with suspected MCAD-deficiency were assayed. Nearly all patients with residual MCAD activities below 2.5% were homozygous 985A>G carriers. MCAD-deficient patients with one other than the 985A>G mutation had higher MCAD residual activities, ranging from 5.7 to 13.9%. All patients with the 199T>C mutation had residual activities above 10%. CONCLUSIONS:Our newly developed LC-MS/MS method is able to provide ample sensitivity to correctly and rapidly determine MCAD and VLCAD residual activity in human lymphocytes. Importantly, based on measured MCAD residual activities in correlation with genotype, new insights were obtained on the expected clinical phenotype

    Inheritance of Telomere Length in a Bird

    Get PDF
    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length

    Bovine telomere dynamics and the association between telomere length and productive lifespan

    Get PDF
    Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity
    corecore