93 research outputs found
Accuracy of telepsychiatric assessment of new routine outpatient referrals
<p>Abstract</p> <p>Background</p> <p>Studies on the feasibility of telepsychiatry tend to concentrate only on a subset of clinical parameters. In contrast, this study utilises data from a comprehensive assessment. The main objective of this study is to compare the accuracy of findings from telepsychiatry with those from face to face interviews.</p> <p>Method</p> <p>This is a primary, cross-sectional, single-cluster, balanced crossover, blind study involving new routine psychiatric referrals. Thirty-seven out of forty cases fulfilling the selection criteria went through a complete set of independent face to face and video assessments by the researchers who were blind to each other's findings.</p> <p>Results</p> <p>The accuracy ratio of the pooled results for DSM-IV diagnoses, risk assessment, non-drug and drug interventions were all above 0.76, and the combined overall accuracy ratio was 0.81. There were substantial intermethod agreements for Cohen's kappa on all the major components of evaluation except on the Risk Assessment Scale where there was only weak agreement.</p> <p>Conclusion</p> <p>Telepsychiatric assessment is a dependable method of assessment with a high degree of accuracy and substantial overall intermethod agreement when compared with standard face to face interview for new routine outpatient psychiatric referrals.</p
Clonal Structure of Rapid-Onset MDV-Driven CD4+ Lymphomas and Responding CD8+ T Cells
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both “public” and “private” CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation
Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice
<p>Abstract</p> <p>Background</p> <p>Obesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-<it>db/db </it>(<it>db/db</it>) obese mice.</p> <p>Methods</p> <p>Male <it>db/db </it>mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks.</p> <p>Results</p> <p>At sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of <it>TNF-α </it>and <it>interleukin-6 </it>mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition.</p> <p>Conclusions</p> <p>Pitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals.</p
Identifying Changes in Selective Constraints: Host Shifts in Influenza
The natural reservoir of Influenza A is waterfowl. Normally, waterfowl viruses are not adapted to infect and spread in the human population. Sometimes, through reassortment or through whole host shift events, genetic material from waterfowl viruses is introduced into the human population causing worldwide pandemics. Identifying which mutations allow viruses from avian origin to spread successfully in the human population is of great importance in predicting and controlling influenza pandemics. Here we describe a novel approach to identify such mutations. We use a sitewise non-homogeneous phylogenetic model that explicitly takes into account differences in the equilibrium frequencies of amino acids in different hosts and locations. We identify 172 amino acid sites with strong support and 518 sites with moderate support of different selection constraints in human and avian viruses. The sites that we identify provide an invaluable resource to experimental virologists studying adaptation of avian flu viruses to the human host. Identification of the sequence changes necessary for host shifts would help us predict the pandemic potential of various strains. The method is of broad applicability to investigating changes in selective constraints when the timing of the changes is known
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
BACKGROUND:
The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population.
METHODS:
EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110.
FINDINGS:
Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1).
INTERPRETATION:
In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease.
FUNDING:
Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells
- …