242 research outputs found

    Towards deterministic optical quantum computation with coherently driven atomic ensembles

    Full text link
    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single-photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage devise. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons.Comment: 11 pages, 7 figure

    Anomalous fluctuations of the condensate in interacting Bose gases

    Full text link
    We find that the fluctuations of the condensate in a weakly interacting Bose gas confined in a box of volume VV follow the law V4/3\sim V^{4/3}. This anomalous behaviour arises from the occurrence of infrared divergencies due to phonon excitations and holds also for strongly correlated Bose superfluids. The analysis is extended to an interacting Bose gas confined in a harmonic trap where the fluctuations are found to exhibit a similar anomaly.Comment: 4 pages, RevTe

    Temperature-Dependent Frequency Shifts in Collective Excitations of a Bose-Einstein Condensate

    Full text link
    By including the contribution of the thermal cloud to the Lagrangian of the condensate of a Bose gas, we extend the time-dependent variational method at zero temperature to study temperature-dependent low collective excitation modes. A Gaussian trial wave function of the condensate and a static distribution density of the thermal cloud are used, and analytical expressions for temperature-dependent excitation frequencies obtained. Theoretical results are compared with measurements in the JILA and MIT experiments.Comment: 13 pages, RevTex, 2 EPS figure

    Damping of low-energy excitations of a trapped Bose condensate at finite temperatures

    Full text link
    We present the theory of damping of low-energy excitations of a trapped Bose condensate at finite temperatures, where the damping is provided by the interaction of these excitations with the thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal excitations for damping in non-spherical traps. The damping rates of the lowest excitations, following from our theory, are in fair agreement with the data of recent JILA and MIT experiments. The damping of quasiclassical excitations is determined by the condensate boundary region, and the result for the damping rate is drastically different from that in a spatially homogeneous gas.Comment: 10 pages RevTeX, correction of the misprints and addition of the sentence clarifying the result for quasiclassical excitationscorrection of the misprints and addition of the sentence clarifying the result for quasiclassical excitation

    Theory of Bose-Einstein condensation in trapped gases

    Full text link
    The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references, new figures, various changes and corrections, for publ. in Rev. Mod. Phys., available also at http://www-phys.science.unitn.it/bec/BEC.htm

    CYGD: the Comprehensive Yeast Genome Database

    Get PDF
    The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/

    Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation

    Get PDF
    Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.Comment: 18 pages, 9 figures, Fig.3 replaced, to appear in Physical Review

    Self-Similar Interpolation in Quantum Mechanics

    Full text link
    An approach is developed for constructing simple analytical formulae accurately approximating solutions to eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In order to derive interpolation formulae valid in the whole range of parameters of considered physical quantities, the self-similar renormalization procedure is complimented here by boundary conditions which define control functions guaranteeing correct asymptotic behaviour in the vicinity of boundary points. To emphasize the generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In addition, the nonlinear Schr\"odinger equation is considered, for which both eigenvalues and wave functions are constructed.Comment: 1 file, 30 pages, RevTex, no figure
    corecore