We present the theory of damping of low-energy excitations of a trapped Bose
condensate at finite temperatures, where the damping is provided by the
interaction of these excitations with the thermal excitations. We emphasize the
key role of stochastization in the behavior of the thermal excitations for
damping in non-spherical traps. The damping rates of the lowest excitations,
following from our theory, are in fair agreement with the data of recent JILA
and MIT experiments. The damping of quasiclassical excitations is determined by
the condensate boundary region, and the result for the damping rate is
drastically different from that in a spatially homogeneous gas.Comment: 10 pages RevTeX, correction of the misprints and addition of the
sentence clarifying the result for quasiclassical excitationscorrection of
the misprints and addition of the sentence clarifying the result for
quasiclassical excitation