1,197 research outputs found
Urban Catholic High Schools and Disadvantaged Females
The purpose of this study was to discover the life experiences of disadvantaged female graduates of urban Catholic high schools and what they say about the capacity of Catholic education to meet their academic, emotional, social, and spiritual needs. Based on narrative inquiry, this study was conducted using a series of in-depth, semistructured interviews to elicit the life experiences of 5 participants. Twelve common personal characteristics emerged directly from the narratives of the participants and provided the backdrop for two patterns: (a) the importance of education, and (b) the importance of relationships. This study found the high school experiences met the academic needs of all participants, but the different school sites varied in their ability to meet the emotional, social, and spiritual needs. This study also found four characteristics interacted in creating the Catholic school culture: (a) building relationships, (b) promoting a sense of community, (c) supporting a caring and nurturing environment, and (d) emphasizing respect for all members of the school community
Do current WIMP direct measurements constrain light relic neutralinos?
New upper bounds on direct detection rates have recently been presented by a
number of experimental collaborations working on searches for WIMPs. In this
paper we analyze how the constraints on relic neutralinos which can be derived
from these results is affected by the uncertainties in the distribution
function of WIMPs in the halo. Various different categories of velocity
distribution functions are considered, and the ensuing implications for
supersymmetric configurations derived. We conservatively conclude that current
experimental data do not constrain neutralinos of small mass (below 50 GeV).Comment: 9 pages, 7 figures, typeset with ReVTeX4. The paper may also be found
at http://www.to.infn.it/~fornengo/papers/constraints05.ps.gz or through
http://www.astroparticle.to.infn.it/index.htm
The effects of climatic fluctuations and extreme events on running water ecosystems
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
Mechanisms of the Vertical Secular Heating of a Stellar Disk
We investigate the nonlinear growth stages of bending instability in stellar
disks with exponential radial density profiles.We found that the unstable modes
are global (the wavelengths are larger than the disk scale lengths) and that
the instability saturation level is much higher than that following from a
linear criterion. The instability saturation time scales are of the order of
one billion years or more. For this reason, the bending instability can play an
important role in the secular heating of a stellar disk in the direction.
In an extensive series of numerical -body simulations with a high spatial
resolution, we were able to scan in detail the space of key parameters (the
initial disk thickness , the Toomre parameter , and the ratio of dark
halo mass to disk mass ). We revealed three distinct
mechanisms of disk heating in the direction: bending instability of the
entire disk, bending instability of the bar, and heating on vertical
inhomogeneities in the distribution of stellar matter.Comment: 22 pages including 8 figures. To be published in Astronomy Letters
(v.29, 2003
Theoretical Directional and Modulated Rates for Direct SUSY Dark Matter Detection
Exotic dark matter together with the vacuum energy (cosmological constant)
seem to dominate in the flat Universe. Thus direct dark matter detection is
central to particle physics and cosmology. Supersymmetry provides a natural
dark matter candidate, the lightest supersymmetric particle (LSP). Furthermore
from the knowledge of the density and velocity distribution of the LSP, the
quark substructure of the nucleon and the nuclear structure (form factor and/or
spin response function), one is able to evaluate the event rate for LSP-nucleus
elastic scattering. The thus obtained event rates are, however, very low. So it
is imperative to exploit the two signatures of the reaction, namely the
modulation effect, i.e. the dependence of the event rate on the Earth's motion,
and the directional asymmetry, i.e. the dependence of the rate on the the
relative angle between the direction of the recoiling nucleus and the sun's
velocity. These two signatures are studied in this paper employing various
velocity distributions and a supersymmetric model with universal boundary
conditions at large tan(beta).Comment: 11 LATEX pages, 1 table and 4 ps figures included. Paper presented in
DARK2002, Fourth Heidelberg International Conference on Dark Matter in Astro-
and Particle Physics, Cape Town, South Africa, 4-9 February, 2002, to appear
in the proceedings (to be published by Springer Verlag
Dark matter and Colliders searches in the MSSM
We study the complementarity between dark matter experiments (direct
detection and indirect detections) and accelerator facilities (the CERN LHC and
a TeV Linear Collider) in the framework of the
constrained Minimal Supersymmetric Standard Model (MSSM). We show how
non--universality in the scalar and gaugino sectors can affect the experimental
prospects to discover the supersymmetric particles. The future experiments will
cover a large part of the parameter space of the MSSM favored by WMAP
constraint on the relic density, but there still exist some regions beyond
reach for some extreme (fine tuned) values of the supersymmetric parameters.
Whereas the Focus Point region characterized by heavy scalars will be easily
probed by experiments searching for dark matter, the regions with heavy
gauginos and light sfermions will be accessible more easily by collider
experiments. More informations on both supersymmetry and astrophysics
parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
8th Annual Seminar on Legal Issues for Financial Institutions
Outline of speakers\u27 presentations from the 8th Annual Seminar on Legal Issues for Financial Institutions held by UK/CLE on March 11-12, 1988
Toward Understanding the origin of the Fundamental Plane for Early-Type Galaxies
We present a panoramic review of several observational and theoretical
aspects of the modern astrophysical research about the origin of the
Fundamental Plane (FP) relation for Early-Type Galaxies (ETGs). The discussion
is focused on the problem of the tilt and the tightness of the FP, and on the
attempts to derive the luminosity evolution of ETGs with redshift. Finally, a
number of observed features in the FP are interpreted from the standpoint of a
new theoretical approach based on the two-component tensor virial theorem.Comment: 30 pages, 3 figure
- …