10,231 research outputs found
Geometry, stochastic calculus and quantum fields in a non-commutative space-time
The algebras of non-relativistic and of classical mechanics are unstable
algebraic structures. Their deformation towards stable structures leads,
respectively, to relativity and to quantum mechanics. Likewise, the combined
relativistic quantum mechanics algebra is also unstable. Its stabilization
requires the non-commutativity of the space-time coordinates and the existence
of a fundamental length constant. The new relativistic quantum mechanics
algebra has important consequences on the geometry of space-time, on quantum
stochastic calculus and on the construction of quantum fields. Some of these
effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur
Lie Superalgebra Stability and Branes
The algebra of the generators of translations in superspace is unstable, in
the sense that infinitesimal perturbations of its structure constants lead to
non-isomorphic algebras. We show how superspace extensions remedy this
situation (after arguing that remedy is indeed needed) and review the benefits
reaped in the description of branes of all kinds in the presence of the extra
dimensions.Comment: Talk given at the conference ``Brane New World and Non-commutative
Geometry'', held in Torino, October 2000. To appear in the proceedings by
World Scientific. 10 pages, 1 figur
A história da certificação ISO 9001 da Embrapa Meio Ambiente.
bitstream/item/40190/1/Documentos-84.pd
Teaching Laminar-flow reactors: From experimentation to CFD simulation
An integrated chemical engineering lab experiment is described in this paper. It makes use of a laminar-flow tubular reactor (LFTR) through consecutive lab sessions. In a first session (not described here), the pseudo first-order kinetic constant for the reaction between crystal violet and sodium hydroxide is determined at different temperatures in a batch reactor. Then a tracer experiment is used to characterize the flow, pattern in the LFTR, and finally the steady-state conversion of crystal violet in the reactor is measured. For computing the theoretical reactor conversion, students must use the previously collected kinetic and tracer data, in a concept-integration exercise. A computational fluid dynamics (CFD) code (Fluent) is also used to simulate both the tracer and the isothermal reaction experiments performed in the LFTR. A very good agreement is obtained between experimental and simulated results and both only differ slightly from the theoretical predictions. The use of the CFD program is particularly noteworthy. For instance, transient simulations allow a very nice visualization of the tracer concentration front evolution, while the steady-state profiles along the axial position provide a good perspective of how reactant concentration varies within the reactor
Gender gap in the ERASMUS mobility program
Studying abroad has become very popular among students. The ERASMUS mobility
program is one of the largest international student exchange programs in the
world, which has supported already more than three million participants since
1987. We analyzed the mobility pattern within this program in 2011-12 and found
a gender gap across countries and subject areas. Namely, for almost all
participating countries, female students are over-represented in the ERASMUS
program when compared to the entire population of tertiary students. The same
tendency is observed across different subject areas. We also found a gender
asymmetry in the geographical distribution of hosting institutions, with a bias
of male students in Scandinavian countries. However, a detailed analysis
reveals that this latter asymmetry is rather driven by subject and consistent
with the distribution of gender ratios among subject areas
- …