300 research outputs found
The two uniform infinite quadrangulations of the plane have the same law
We prove that the uniform infinite random quadrangulations defined
respectively by Chassaing-Durhuus and Krikun have the same distribution.Comment: English version of arXiv:0805.4687, with various improvement
Spectra of large diluted but bushy random graphs
We compute an asymptotic expansion in of the limit in of the
empirical spectral measure of the adjacency matrix of an Erd\H{o}s-R\'enyi
random graph with vertices and parameter . We present two different
methods, one of which is valid for the more general setting of locally
tree-like graphs. The second order in the expansion gives some information
about the edge.Comment: 24 pages, 5 figure
Campylobacter jejuni, an uncommon cause of splenic abscess diagnosed by 16S rRNA gene sequencing
SummarySplenic abscess is a rare disease that primarily occurs in patients with splenic trauma, endocarditis, sickle cell anemia, or other diseases that compromise the immune system. This report describes a culture-negative splenic abscess in an immunocompetent patient caused by Campylobacter jejuni, as determined by 16S rRNA gene sequencing
HST Scattered Light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-H 569
We present new HST ACS observations and detailed models for a recently
discovered edge-on protoplanetary disk around ESO H 569 (a low-mass T
Tauri star in the Cha I star forming region). Using radiative transfer models
we probe the distribution of the grains and overall shape of the disk
(inclination, scale height, dust mass, flaring exponent and surface/volume
density exponent) by model fitting to multiwavelength (F606W and F814W) HST
observations together with a literature compiled spectral energy distribution.
A new tool set was developed for finding optimal fits of MCFOST radiative
transfer models using the MCMC code emcee to efficiently explore the high
dimensional parameter space. It is able to self-consistently and simultaneously
fit a wide variety of observables in order to place constraints on the physical
properties of a given disk, while also rigorously assessing the uncertainties
in those derived properties. We confirm that ESO H 569 is an optically
thick nearly edge-on protoplanetary disk. The shape of the disk is well
described by a flared disk model with an exponentially tapered outer edge,
consistent with models previously advocated on theoretical grounds and
supported by millimeter interferometry. The scattered light images and spectral
energy distribution are best fit by an unusually high total disk mass (gas+dust
assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.Comment: Accepted for publication in Ap
Fabrication of Sub-5 nm Nanochannels in Insulating Substrates Using Focused Ion Beam Milling
The use of focused ion beam (FIB) milling to fabricate nanochannels with critical dimensions extending below 5 nm is described. FIB milled lines have narrowing widths as they are milled deeper into a substrate. This focusing characteristic is coupled with a two-layered architecture consisting of a relatively thick (>100 nm) metal film deposited onto a substrate. A channel is milled through the metal layer until it penetrates a prescribed depth into the substrate material. The metal is then removed, leaving a nanochannel with smooth surfaces and lateral dimensions as small as sub-5 nm. These open nanochannels can be sealed with a cover plate and the resulting devices are well-suited for single-molecule DNA transport studies. This methodology is used with quartz, single-crystal silicon, and polydimethylsiloxane substrates to demonstrate its general utility
Electrokinetically-Driven Transport of DNA through Focused Ion Beam Milled Nanofluidic Channels
The electrophoretically-driven transport of double-stranded λ-phage DNA through focused ion beam (FIB) milled nanochannels is described. Nanochannels were fabricated having critical dimensions (width and depth) corresponding to 0.5×, 1×, and 2× the DNA persistence length – or 25 nm, 50 nm, and 100 nm, respectively. The threshold field strength required to drive transport, the threading mobility, and the transport mobility were measured as a function of nanochannel size. As the nanochannel dimensions decreased, the entropic barrier to translocation increased and transport became more constrained. Equilibrium models of confinement provide a framework in which to understand the observed trends, although the dynamic nature of the experiments resulted in significant deviations from theory. It was also demonstrated that the use of dynamic wall coatings for the purpose of electroosmotic flow suppression can have a significant impact on transport dynamics that may obfuscate entropic contributions. The non-intermittent DNA transport through the FIB milled nanochannels demonstrates that they are well suited for use in nanofluidic devices. We expect that an understanding of the dynamic transport properties reported here will facilitate the incorporation of FIB-milled nanochannels in devices for single molecule and ensemble analyses
Enhanced nanochannel translocation and localization of genomic DNA molecules using three-dimensional nanofunnels
The ability to precisely control the transport of single DNA molecules through a nanoscale channel is critical to DNA sequencing and mapping technologies that are currently under development. Here we show how the electrokinetically driven introduction of DNA molecules into a nanochannel is facilitated by incorporating a three-dimensional nanofunnel at the nanochannel entrance. Individual DNA molecules are imaged as they attempt to overcome the entropic barrier to nanochannel entry through nanofunnels with various shapes. Theoretical modeling of this behavior reveals the pushing and pulling forces that result in up to a 30-fold reduction in the threshold electric field needed to initiate nanochannel entry. In some cases, DNA molecules are stably trapped and axially positioned within a nanofunnel at sub-threshold electric field strengths, suggesting the utility of nanofunnels as force spectroscopy tools. These applications illustrate the benefit of finely tuning nanoscale conduit geometries, which can be designed using the theoretical model developed here.Forcing a DNA molecule into a nanoscale channel requires overcoming the free energy barrier associated with confinement. Here, the authors show that DNA injected through a funnel-shaped entrance more efficiently enters the nanochannel, thanks to facilitating forces generated by the nanofunnel geometry
Detectors and cryostat design for the SuMIRe Prime Focus Spectrograph (PFS)
We describe the conceptual design of the camera cryostats, detectors, and
detector readout electronics for the SuMIRe Prime Focus Spectrograph (PFS)
being developed for the Subaru telescope. The SuMIRe PFS will consist of four
identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic
positioner at the prime focus. Each spectrograph will have three channels
covering wavelength ranges 3800 {\AA} - 6700 {\AA}, 6500 {\AA} - 10000 {\AA},
and 9700 {\AA} - 13000 {\AA}, with the dispersed light being imaged in each
channel by a f/1.10 vacuum Schmidt camera. In the blue and red channels a pair
of Hamamatsu 2K x 4K edge-buttable CCDs with 15 um pixels are used to form a 4K
x 4K array. For the IR channel, the new Teledyne 4K x 4K, 15 um pixel,
mercury-cadmium-telluride sensor with substrate removed for short-wavelength
response and a 1.7 um cutoff will be used. Identical detector geometry and a
nearly identical optical design allow for a common cryostat design with the
only notable difference being the need for a cold radiation shield in the IR
camera to mitigate thermal background. This paper describes the details of the
cryostat design and cooling scheme, relevant thermal considerations and
analysis, and discusses the detectors and detector readout electronics
A Device for Performing Lateral Conductance Measurements on Individual Double-Stranded DNA Molecules
A nanofluidic device is described that is capable of electrically monitoring the driven translocation of DNA molecules through a nanochannel. This is achieved by intersecting a long transport channel with a shorter orthogonal nanochannel. The ionic conductance of this transverse nanochannel is monitored while DNA is electrokinetically driven through the transport channel. When DNA passes the intersection, the transverse conductance is altered, resulting in a transient current response. In 1 M KCl solutions, this was found to be a current enhancement of 5–25%, relative to the baseline transverse ionic current. Two different device geometries were investigated. In one device, the DNA was detected after it was fully inserted into and translocating through the transport nanochannel. In the other device, the DNA was detected while it was in the process of entering the nanochannel. It was found that these two conditions are characterized by different transport dynamics. Simultaneous optical and electrical monitoring of DNA translocation confirmed that the transient events originated from DNA transport through the nanochannel intersection
Metal Core Bonding Motifs of Monodisperse Icosahedral Au13 and Larger Au Monolayer-Protected Clusters As Revealed by X-ray Absorption Spectroscopy and Transmission Electron Microscopy
The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiple-scattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 ± 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer
- …