We present new HST ACS observations and detailed models for a recently
discovered edge-on protoplanetary disk around ESO Hα 569 (a low-mass T
Tauri star in the Cha I star forming region). Using radiative transfer models
we probe the distribution of the grains and overall shape of the disk
(inclination, scale height, dust mass, flaring exponent and surface/volume
density exponent) by model fitting to multiwavelength (F606W and F814W) HST
observations together with a literature compiled spectral energy distribution.
A new tool set was developed for finding optimal fits of MCFOST radiative
transfer models using the MCMC code emcee to efficiently explore the high
dimensional parameter space. It is able to self-consistently and simultaneously
fit a wide variety of observables in order to place constraints on the physical
properties of a given disk, while also rigorously assessing the uncertainties
in those derived properties. We confirm that ESO Hα 569 is an optically
thick nearly edge-on protoplanetary disk. The shape of the disk is well
described by a flared disk model with an exponentially tapered outer edge,
consistent with models previously advocated on theoretical grounds and
supported by millimeter interferometry. The scattered light images and spectral
energy distribution are best fit by an unusually high total disk mass (gas+dust
assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.Comment: Accepted for publication in Ap