19 research outputs found
Validation of a 40-Gene Expression Profile Test to Predict Metastatic Risk in Localized High-Risk Cutaneous Squamous Cell Carcinoma
Background: Current staging systems for cutaneous squamous cell carcinoma (cSCC) have limited positive predictive value (PPV) for identifying patients who will experience metastasis.
Objective: To develop and validate a gene expression profile (GEP) test for predicting risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed patient management. Methods: Archival formalin-fixed paraffin-embedded primary cSCC tissue and clinicopathologic data (n=586) were collected from 23 independent centers in a prospectively designed study. A GEP signature was developed using a discovery cohort (n=202) and validated in a separate, non-overlaping, independent cohort (n=324). Results: A prognostic, 40-gene expression profile (40-GEP) test was developed and validated, stratifying high-risk cSCC patients into classes based on metastasis risk: Class 1 (low-risk), Class 2A (high-risk), and Class 2B (highest-risk). For the validation cohort, 3-year metastasis-free survival (MFS) rates were 91.4%, 80.6%, and 44.0%, respectively. A PPV of 60% was achieved for the highest-risk group (Class 2B), an improvement over staging systems; while negative predictive value, sensitivity, and specificity were comparable to staging systems. Limitations: Potential understaging of cases could affect metastasis rate accuracy.Conclusion: The 40-GEP test is an independent predictor of metastatic risk that can complement current staging systems for patients with high-risk cSCC
Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia
Myelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in genes encoding epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable, with few means to predict which patients will benefit. Here, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients who were responsive or resistant to decitabine (DAC) in order to develop a molecular means of predicting response at diagnosis. While somatic mutations did not differentiate responders from nonresponders, we identified 167 differentially methylated regions (DMRs) of DNA at baseline that distinguished responders from nonresponders using next-generation sequencing. These DMRs were primarily localized to nonpromoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. Transcriptional analysis revealed differences in gene expression at diagnosis between responders and nonresponders. In responders, the upregulated genes included those that are associated with the cell cycle, potentially contributing to effective DAC incorporation. Treatment with CXCL4 and CXCL7, which were overexpressed in nonresponders, blocked DAC effects in isolated normal CD34(+) and primary CMML cells, suggesting that their upregulation contributes to primary DAC resistance