16 research outputs found

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly

    Get PDF
    Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system

    Order in Spontaneous Behavior

    Get PDF
    Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents

    Cellular Differentiation, Ageing and Ion Transport

    No full text

    Differential Effects of the Dual Orexin Receptor Antagonist Almorexant and the GABAA-α1 Receptor Modulator Zolpidem, Alone or Combined with Ethanol, on Motor Performance in the Rat

    No full text
    Current insomnia treatments such as γ-aminobutyric acid (GABA) receptor modulators are associated with sedative and muscle-relaxant effects, which increase when drug intake is combined with alcohol. This study compared the novel sleep-enabling compound almorexant (ACT-078573-hydrochloride), a dual orexin receptor antagonist, with the positive GABAA-α1 receptor modulator zolpidem. Both compounds were administered alone or in combination with ethanol, and their effects on forced motor performance were determined in Wistar rats upon waking after treatment. To detect substance-induced sedation and myorelaxation, time spent on an accelerating rotating rod (rotarod) and forepaw grip strength were measured. Zolpidem (10, 30, and 100 mg/kg, p.o.) and ethanol (0.32, 1, and 1.5 g/kg, i.p.) dose-dependently decreased rotarod performance and grip strength, whereas almorexant (30, 100, and 300 mg/kg, p.o.) did not. Doses of ethanol (0.32 and 1 g/kg), which were ineffective when administered alone, showed interactions with zolpidem (10 and 30 mg/kg) leading to reduced rotarod performance and grip strength; in contrast, combination of ethanol (0.32 and 1 g/kg) with almorexant (100 and 300 mg/kg) did not reduce performance or grip strength below ethanol alone. We conclude that unlike zolpidem, almorexant does not interfere with forced motor performance or grip strength in the rat, nor does it further increase the sedative effects of ethanol. Our results suggest that the effect of almorexant can be immediately reversed to full alertness like under physiological sleep, and that almorexant is less likely to show strong sedation, excessive myorelaxation, or interaction with alcohol than commonly prescribed hypnotics such as zolpidem

    Modification of benthic communities by territorial damselfish: a multi-species comparison

    No full text
    The effects of territorial damselfish on coral reef benthos have been well-studied for a few relatively large-bodied species with visually distinct territories. Despite a growing body of research demonstrating their abundance, and their effects on algae, corals and other grazers, there has been little research on the effects of the territorial damselfish community as a whole. This study investigated the space occupation, territory composition, and diet of ten damselfish species at three locations: Magnetic and Orpheus Islands (Great Barrier Reef), and Kimbe Bay (Papua New Guinea). Territories were measured, and the composition of benthic communities inside and outside territories was assessed both in situ and from algal collections. The stomach contents of territorial damselfishes were also quantified. Although the larger, previously well-studied species had the most visible effect on the benthic community in their territories, all the smaller species also significantly affected the algal composition, normally with an increase of palatable algae. However, the composition of algal assemblages inside the territories of different species varied considerably. Damselfish territories were highly individual, not just among species, but also among locations. Diets were diverse and indicated a greater degree of omnivory and detritivory than previously thought. At all locations, territories occupied a substantial proportion of the substratum: >25% on Magnetic Island, >50% at Orpheus Island, and ∼50% in Kimbe Bay. Within individual zones, this figure was as high as 70%. The contribution of territorial damselfishes to a range of benthic patterns and processes is considerable, and future benthic studies may need to distinguish more closely between territory and non-territory areas
    corecore