28 research outputs found

    Patterns in Age-Seroprevalence Consistent with Acquired Immunity against Trypanosoma brucei in Serengeti Lions

    Get PDF
    Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites

    Patterns in Age-Seroprevalence Consistent with Acquired Immunity against Trypanosoma brucei in Serengeti Lions

    Get PDF
    Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites

    Unintended Consequences of Conservation Actions: Managing Disease in Complex Ecosystems

    Get PDF
    Infectious diseases are increasingly recognised to be a major threat to biodiversity. Disease management tools such as control of animal movements and vaccination can be used to mitigate the impact and spread of diseases in targeted species. They can reduce the risk of epidemics and in turn the risks of population decline and extinction. However, all species are embedded in communities and interactions between species can be complex, hence increasing the chance of survival of one species can have repercussions on the whole community structure. In this study, we use an example from the Serengeti ecosystem in Tanzania to explore how a vaccination campaign against Canine Distemper Virus (CDV) targeted at conserving the African lion (Panthera leo), could affect the viability of a coexisting threatened species, the cheetah (Acinonyx jubatus). Assuming that CDV plays a role in lion regulation, our results suggest that a vaccination programme, if successful, risks destabilising the simple two-species system considered, as simulations show that vaccination interventions could almost double the probability of extinction of an isolated cheetah population over the next 60 years. This work uses a simple example to illustrate how predictive modelling can be a useful tool in examining the consequence of vaccination interventions on non-target species. It also highlights the importance of carefully considering linkages between human-intervention, species viability and community structure when planning species-based conservation actions

    Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Get PDF
    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts

    Feline Leukemia Virus and Other Pathogens as Important Threats to the Survival of the Critically Endangered Iberian Lynx (Lynx pardinus)

    Get PDF
    BACKGROUND: The Iberian lynx (Lynx pardinus) is considered the most endangered felid species in the world. In order to save this species, the Spanish authorities implemented a captive breeding program recruiting lynxes from the wild. In this context, a retrospective survey on prevalence of selected feline pathogens in free-ranging lynxes was initiated. METHODOLOGY/ PRINCIPAL FINDINGS: We systematically analyzed the prevalence and importance of seven viral, one protozoan (Cytauxzoon felis), and several bacterial (e.g., hemotropic mycoplasma) infections in 77 of approximately 200 remaining free-ranging Iberian lynxes of the Doñana and Sierra Morena areas, in Southern Spain, between 2003 and 2007. With the exception of feline immunodeficiency virus (FIV), evidence of infection by all tested feline pathogens was found in Iberian lynxes. Fourteen lynxes were feline leukemia virus (FeLV) provirus-positive; eleven of these were antigenemic (FeLV p27 positive). All 14 animals tested negative for other viral infections. During a six-month period in 2007, six of the provirus-positive antigenemic lynxes died. Infection with FeLV but not with other infectious agents was associated with mortality (p<0.001). Sequencing of the FeLV surface glycoprotein gene revealed a common origin for ten of the eleven samples. The ten sequences were closely related to FeLV-A/61E, originally isolated from cats in the USA. Endogenous FeLV sequences were not detected. CONCLUSIONS/SIGNIFICANCE: It was concluded that the FeLV infection most likely originated from domestic cats invading the lynx's habitats. Data available regarding the time frame, co-infections, and outcome of FeLV-infections suggest that, in contrast to the domestic cat, the FeLV strain affecting the lynxes in 2007 is highly virulent to this species. Our data argue strongly for vaccination of lynxes and domestic cats in and around lynx's habitats in order to prevent further spread of the virus as well as reduction the domestic cat population if the lynx population is to be maintained

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    Get PDF
    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently

    Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda

    Get PDF
    BACKGROUND: In rural parts of Africa, dogs live in close association with humans and livestock, roam freely, and usually do not receive prophylactic measures. Thus, they are a source of infectious disease for humans and for wildlife such as protected carnivores. In 2011, an epidemiological study was carried out around three conservation areas in Uganda to detect the presence and determine the prevalence of vector-borne pathogens in rural dogs and associated ticks to evaluate the risk that these pathogens pose to humans and wildlife. METHODS: Serum samples (n = 105), blood smears (n = 43) and blood preserved on FTA cards (n = 38) and ticks (58 monospecific pools of Haemaphysalis leachi and Rhipicephalus praetextatus including 312 ticks from 52 dogs) were collected from dogs. Dog sera were tested by indirect immunofluorescence to detect the presence of antibodies against Rickettsia conorii and Ehrlichia canis. Antibodies against R. conorii were also examined by indirect enzyme immunoassay. Real time PCR for the detection of Rickettsia spp., Anaplasmataceae, Bartonella spp. and Babesia spp. was performed in DNA extracted from FTA cards and ticks. RESULTS: 99 % of the dogs were seropositive to Rickettsia spp. and 29.5 % to Ehrlichia spp. Molecular analyses revealed that 7.8 % of the blood samples were infected with Babesia rossi, and all were negative for Rickettsia spp. and Ehrlichia spp. Ticks were infected with Rickettsia sp. (18.9 %), including R. conorii and R. massiliae; Ehrlichia sp. (18.9 %), including E. chaffeensis and Anaplasma platys; and B. rossi (1.7 %). Bartonella spp. was not detected in any of the blood or tick samples. CONCLUSIONS: This study confirms the presence of previously undetected vector-borne pathogens of humans and animals in East Africa. We recommend that dog owners in rural Uganda be advised to protect their animals against ectoparasites to prevent the transmission of pathogens to humans and wildlife

    The Role of Scavenging in Disease Dynamics

    Get PDF
    Contents Introduction................ 161 The Use of Animal Remains and the Exposure of Scavengers to Disease........ 163 The Relevance of Scavenging for Pathogens to Spread and Persist.......... 166 Human Related Factors Resulting in Increased Risk for Disease Transmission Through Scavenging.............. 170 Management of Scavenging to Reduce Disease Risks.............. 173 Restoration of Large Predators.................. 174 Elimination of Hunting of Scavengers............ 174 Destruction of Big Game and Domestic Animal Carcasses........... 174 Restoration of the Effects of Overabundance............. 175 Excluding Mammalian and Avian Scavengers from Natural Carrions.......... 176 Excluding Mammalian and Avian Scavengers from Vulture Restaurants........... 176 Conclusions and Future Perspectives........... 178 References............... 17
    corecore