39 research outputs found
Wild chimpanzees modify modality of gestures according to the strength of social bonds and personal network size
Primates form strong and enduring social bonds with others and these bonds have important fitness consequences. However, how different types of communication are associated with different types of social bonds is poorly understood. Wild chimpanzees have a large repertoire of gestures, from visual gestures to tactile and auditory gestures. We used social network analysis to examine the association between proximity bonds (time spent in close proximity) and rates of gestural communication in pairs of chimpanzees when the intended recipient was within 10 m of the signaller. Pairs of chimpanzees with strong proximity bonds had higher rates of visual gestures, but lower rates of auditory long-range and tactile gestures. However, individual chimpanzees that had a larger number of proximity bonds had higher rates of auditory and tactile gestures and lower rates of visual gestures. These results suggest that visual gestures may be an efficient way to communicate with a small number of regular interaction partners, but that tactile and auditory gestures may be more effective at communicating with larger numbers of weaker bonds. Increasing flexibility of communication may have played an important role in managing differentiated social relationships in groups of increasing size and complexity in both primate and human evolution
Gestural communication of the gorilla (Gorilla gorilla): repertoire, intentionality and possible origins
Social groups of gorillas were observed in three captive facilities and one African field site. Cases of potential gesture use, totalling 9,540, were filtered by strict criteria for intentionality, giving a corpus of 5,250 instances of intentional gesture use. This indicated a repertoire of 102 gesture types. Most repertoire differences between individuals and sites were explicable as a consequence of environmental affordances and sampling effects: overall gesture frequency was a good predictor of universality of occurrence. Only one gesture was idiosyncratic to a single individual, and was given only to humans. Indications of cultural learning were few, though not absent. Six gestures appeared to be traditions within single social groups, but overall concordance in repertoires was almost as high between as within social groups. No support was found for the ontogenetic ritualization hypothesis as the chief means of acquisition of gestures. Many gestures whose form ruled out such an origin, i.e. gestures derived from species-typical displays, were used as intentionally and almost as flexibly as gestures whose form was consistent with learning by ritualization. When using both classes of gesture, gorillas paid specific attention to the attentional state of their audience. Thus, it would be unwarranted to divide ape gestural repertoires into âinnate, species-typical, inflexible reactionsâ and âindividually learned, intentional, flexible communicationâ. We conclude that gorilla gestural communication is based on a species-typical repertoire, like those of most other mammalian species but very much larger. Gorilla gestures are not, however, inflexible signals but are employed for intentional communication to specific individuals
Stress behaviours buffer macaques from aggression
Primates (including humans) scratch when stressed. So far, such scratching has been seen as a by-product of physiological processes associated with stress, and attributed proximate, regulatory function. However, it is possible that others could use this relationship between scratching and stress as an indication of the animalâs stress state, and thus scratching could potentially have social function. As a test of this theory, we measured the production of, and social responses to scratching in a group of free-ranging rhesus macaques (Macaca mulatta). Firstly, we found that the likelihood of scratching was greater around periods of heightened social stress, such as being in proximity to high-ranking individuals, or non-friends. Secondly, when macaques scratched, subsequent interactions were less likely to be aggressive and more likely to be affiliative. Potential attackers may avoid attacking stressed individuals as stressed individuals could behave unpredictably or be weakened by their state of stress (rendering aggression risky and/or unnecessary). Observable stress behaviour could therefore have additional adaptive value by reducing the potential for escalated aggression, benefiting both senders and receivers by facilitating social cohesion. This basic ability to recognise stress in others could also be an important component in the evolution of social cognition such as empathy