278 research outputs found

    Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

    Get PDF
    The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Central defect type partial ACL injury model on goat knees: the effect of infrapatellar fat pad excision

    Full text link
    BACKGROUND: The mid-substance central defect injury has been used to investigate the primary healing capacity of the anterior cruciate ligament (ACL) in a goat model. The sagittal plane stability on this model has not been confirmed, and possible effects of fat pad excision on healing have not been evaluated. We hypothesize that excising the fat pad tissue results in poorer ligament healing as assessed histologically and decreased tensile strength of the healing ligament. We further hypothesize that the creation of a central defect does not affect sagittal plane knee stability. METHODS: A mid-substance central defect was created with a 4-mm arthroscopic punch in the ACLs of right knees of all the subjects through a medial mini-arthrotomy. Goats were assigned to groups based on whether the fat pad was preserved (group 1, n = 5) or excised completely (group 2, n = 5). The left knees served as controls in each goat. Histopathology of the defect area along with measurement of type I collagen in one goat from each group were performed at 10th week postoperatively. The remaining knees were evaluated biomechanically at the 12th week, by measuring anterior tibial translation (ATT) of the knee joints at 90° of flexion and testing tensile properties (ultimate tensile load (UTL), ultimate elongation (UE), stiffness (S), failure mode (FM)) of the femur-ACL-tibia complex. RESULTS AND DISCUSSION: Histopathology analysis revealed that the central defect area was fully filled macroscopically and microscopically. However, myxoid degeneration and fibrosis were observed in group 2 and increased collagen type I content was noted in group 2. There were no significant differences within and between groups in terms of ATT values (p = 0.715 and p = 0.149, respectively). There were no significance between or within groups in terms of ultimate tensile load and ultimate elongation; however, group 2 demonstrated greater stiffness than group 1 that was correlated with the fibrotic changes detected microscopically (p = 0.043). CONCLUSIONS: The central defect type injury model was confirmed to be biomechanically stable in a goat model. Resection of the fat pad was noted to negatively affect defect healing and increase ligament stiffness in the central defect injury model

    A Cell-Based Model for Quorum Sensing in Heterogeneous Bacterial Colonies

    Get PDF
    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution

    Sustainability, epistemology, ecocentric business and marketing strategy:ideology, reality and vision

    Get PDF
    This conceptual article examines the relationship between marketing and sustainability through the dual lenses of anthropocentric and ecocentric epistemology. Using the current anthropocentric epistemology and its associated dominant social paradigm, corporate ecological sustainability in commercial practice and business school research and teaching is difficult to achieve. However, adopting an ecocentric epistemology enables the development of an alternative business and marketing approach that places equal importance on nature, the planet, and ecological sustainability as the source of human and other species' well-being, as well as the source of all products and services. This article examines ecocentric, transformational business, and marketing strategies epistemologically, conceptually and practically and thereby proposes six ecocentric, transformational, strategic marketing universal premises as part of a vision of and solution to current global un-sustainability. Finally, this article outlines several opportunities for management practice and further research

    A Symmetric Dual Feedback System Provides a Robust and Entrainable Oscillator

    Get PDF
    Many organisms have evolved molecular clocks to anticipate daily changes in their environment. The molecular mechanisms by which the circadian clock network produces sustained cycles have extensively been studied and transcriptional-translational feedback loops are common structures to many organisms. Although a simple or single feedback loop is sufficient for sustained oscillations, circadian clocks implement multiple, complicated feedback loops. In general, different types of feedback loops are suggested to affect the robustness and entrainment of circadian rhythms

    Effect of nesiritide in patients with acute decompensated heart failure.

    Get PDF
    BACKGROUND: Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. METHODS: We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. RESULTS: Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P=0.03) and 24 hours (68.2% vs. 66.1%, P=0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.1 to 0.7; P=0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, -0.4 percentage points; 95% CI, -1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P=0.11). CONCLUSIONS: Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.

    Deficient of a Clock Gene, Brain and Muscle Arnt-Like Protein-1 (BMAL1), Induces Dyslipidemia and Ectopic Fat Formation

    Get PDF
    A link between circadian rhythm and metabolism has long been discussed. Circadian rhythm is controlled by positive and negative transcriptional and translational feedback loops composed of several clock genes. Among clock genes, the brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) play important roles in the regulation of the positive rhythmic transcription. In addition to control of circadian rhythm, we have previously shown that BMAL1 regulates adipogenesis. In metabolic syndrome patients, the function of BMAL1 is dysregulated in visceral adipose tissue. In addition, analysis of SNPs has revealed that BMAL1 is associated with susceptibility to hypertension and type II diabetes. Furthermore, the significant roles of BMAL1 in pancreatic β cells proliferation and maturation were recently reported. These results suggest that BMAL1 regulates energy homeostasis. Therefore, in this study, we examined whether loss of BMAL1 function is capable of inducing metabolic syndrome. Deficient of the Bmal1 gene in mice resulted in elevation of the respiratory quotient value, indicating that BMAL1 is involved in the utilization of fat as an energy source. Indeed, lack of Bmal1 reduced the capacity of fat storage in adipose tissue, resulting in an increase in the levels of circulating fatty acids, including triglycerides, free fatty acids, and cholesterol. Elevation of the circulating fatty acids level induced the formation of ectopic fat in the liver and skeletal muscle in Bmal1 -/- mice. Interestingly, ectopic fat formation was not observed in tissue-specific (liver or skeletal muscle) Bmal1 -/- mice even under high fat diet feeding condition. Therefore, we were led to conclude that BMAL1 is a crucial factor in the regulation of energy homeostasis, and disorders of the functions of BMAL1 lead to the development of metabolic syndrome

    REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock

    Get PDF
    Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE–binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE–containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms
    corecore