99 research outputs found

    Pine cone scale-inspired motile origami

    Get PDF
    Stimuli-sensitive hydrogels have received attention because of their potential applications in various fields. Stimuli-directed motion offers many practical applications, such as in drug delivery systems and actuators. Directed motion of asymmetric hydrogels has long been designed; however, few studies have investigated the motion control of symmetric hydrogels. We designed a pine cone scale-inspired movable temperature-sensitive symmetric hydrogel that contains Fe3O4. Alignment of Fe3O4 along the magnetic force is key in motion control in which Fe3O4 acts like fibers in a pine cone scale. Although a homogeneous temperature-sensitive hydrogel cannot respond to a temperature gradient, the Fe3O4-containing hydrogel demonstrates considerable bending motion. Varying degrees and directions of motion are easily facilitated by controlling the amount and alignment angle of the Fe3O4. The shape of the hydrogel layer also influences the morphological structure. This study introduced facile and low-cost methods to control various bending motions. These results can be applied to many fields of engineering, including industrial engineering.111Ysciescopu

    Deleted in Liver Cancer 2 (DLC2) Was Dispensable for Development and Its Deficiency Did Not Aggravate Hepatocarcinogenesis

    Get PDF
    DLC2 (deleted in liver cancer 2), a Rho GTPase-activating protein, was previously shown to be underexpressed in human hepatocellular carcinoma and has tumor suppressor functions in cell culture models. We generated DLC2-deficient mice to investigate the tumor suppressor role of DLC2 in hepatocarcinogenesis and the function of DLC2 in vivo. In this study, we found that, unlike homologous DLC1, which is essential for embryonic development, DLC2 was dispensable for embryonic development and DLC2-deficient mice could survive to adulthood. We also did not observe a higher incidence of liver tumor formation or diethylnitrosamine (DEN)-induced hepatocarcinogenesis in DLC2-deficient mice. However, we observed that DLC2-deficient mice were smaller and had less adipose tissue than the wild type mice. These phenotypes were not due to reduction of cell size or defect in adipogenesis, as observed in the 190B RhoGAP-deficient mouse model. Together, these results suggest that deficiency in DLC2 alone does not enhance hepatocarcinogenesis

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Large deep-sea zooplankton biomass mirrors primary production in the global ocean

    Get PDF
    The biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y(-1) transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration

    Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach

    Full text link
    [EN] In this work, explicit expressions to estimate all the transversely isotropic elastic constants of lamellar bone as a function of the volumetric bone mineral density (BMD) are provided. The methodology presented is based on the direct homogenization procedure using the finite element method, the continuum approach based on the Hill bounds, the least-square method and the mean field technique. Firstly, a detailed description of the volumetric content of the different components of bone is provided. The parameters defined in this step are related to the volumetric BMD considering that bone mineralization process occurs at the smallest scale length of the bone tissue. Then, a thorough description provides the details of the numerical models and the assumptions adopted to estimate the elastic behaviour of the forward scale lengths. The results highlight the noticeable influence of the BMD on the elastic modulus of lamellar bone. Power law regressions fit the Young's moduli, shear stiffness moduli and Poisson ratios. In addition, the explicit expressions obtained are applied to the estimation of the elastic constants of cortical bone. At this scale length, a representative unit cell of cortical bone is analysed including the fibril orientation pattern given by Wagermaier et al. (Biointerphases 1:1-5, 2006) and the BMD distributions observed by Granke et al. (PLoS One 8:e58043, 2012) for the osteon. Results confirm that fibril orientation arrangement governs the anisotropic behaviour of cortical bone instead of the BMD distribution. The novel explicit expressions obtained in this work can be used for improving the accuracy of bone fracture risk assessment.The authors acknowledge the Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46641-R and to the Generalitat Valenciana for Programme PROMETEO 2016/007. The authors declare that they have no conflict of interestVercher Martínez, A.; Giner Maravilla, E.; Belda, R.; Aigoun, A.; Fuenmayor Fernández, F. (2018). Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach. Biomechanics and Modeling in Mechanobiology. 17(2):449-464. https://doi.org/10.1007/s10237-017-0971-xS449464172Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Ana Rec 158:375–386Barbour KE, Zmuda JM, Strotmeyer ES, Horwitz MJ, Boudreau R, Evans RW, Ensrud K, Petit MA, Gordon CL, Cauley JA (2013) Correlates of trabecular and cortical volumetric bone mineral density of the radius and tibia older men: the osteoporotic fractures in men study. J Bone Miner Res 25(5):1017–1028Bar-On B, Wagner HD (2013) Structural motifs and elastic properties of hierarchical biological tissues—a review. J Struct Biol 183:149–164Cowin SC (2000) How is a tissue built? J Biomech Eng 122:553–569Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca RatonCurrey JD (1986) Power law models for the mechanical properties of cancellous bone. Eng Med 15(3):153–154Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139Daszkiewicz K, Maquer G, Zysset PK (2017) The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements. Biomech Model Mechanobiol 16:731–742Faingold A, Sidney RC, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Biomech Materials 9:198–206Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theo Biol 24:597–620Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 12:697–711Grant CA, Langton C, Schuetz MA, Epari DR (2011) Determination of the material properties of ovine cortical bone. Poster No. 2226, 57th Orthopaedic Research Society (ORS) Annual meeting, Long Beach, CaliforniaGranke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïd A, Laugier P (2012) Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 8:e58043Gurtin ME (1972) The linear theory of elasticity. Handbuch del Physik VIa 2:1–296Hamed E, Jasiuk I (2012) Elastic modeling of bone at nanostructural level. Mat Sci Eng R73:27–49Hernández CJ, Beaupré GS, Keller TS, Carter DR (2001a) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29:74–78Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sec A 65:349–354Hodge AJ, Petruska JA (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York, pp 289–300Jäger I, Fratzl P (2000) Mineralized collagen: a mechanical model with a staggered arrangement of mineral particles. Biophys J 78:1737–1746Kuhn JL, Goldstein SA, Choi K, London M, Feldkamp LA, Matthews LS (1989) Comparison of the trabecular and cortical tissue moduli from human iliac crests. J Orthop Res 7:876–884Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54Lees S, Heeley JD, Cleary PF (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tissue Int 29:107–117Lekhnitskii SG (1963) Theory of elasticity of anisotropic elastic body. Holden-Day, San Francisco, pp 1–73Lempriere BM (1968) Poisson’s ratio in orthotropic materials. Am Inst Aeronaut Astronaut J J6:2226–2227Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH, Tay FR (2011) Hierarchical and non-hierarchical mineralization of collagen. Biomater 32:1291–1300Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5):445–454Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10:309–322Nobakhti S, Limbert G, Thurner PJ (2014) Cement lines and interlamellar areas in compact bone as strain amplifiers—Contributors to elasticity, fracture toughness and mechanotransduction. J Mech Behav Biomed Mater 29:235–251Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. PNAS USA 103:9001–9005Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9:499–510Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10:67–77Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102Robinson RA, Rochester MD (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg 34–a:389–435Roque WL, Arcaro K, Alberich-Bayarri A (2013) Mechanical competence of bone: a new parameter to grade trabecular bone fragility from tortuosity and elasticity. IEEE Trans Bio Eng 60:1363–1370Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13(3):333–337Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16Silver FH, Landis WJ (2011) Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect Tissue Res 52:242–254Tommasini SM, Nasser P, Hu B, Jepsen KJ (2008) Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res 23:236–246Ulrich D, Rietbergen B, Weinans H, Rüegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192Ulrich D, Rietbergen B, Laib A, Rüegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60Vercher A, Giner E, Arango C, Tarancón JE, Fuenmayor FJ (2014) Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomech Model Mechanobiol 13:437–449Vercher-Martínez A, Giner E, Arango C, Fuenmayor FJ (2015) Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone. J Mech Behav Biomed Mater 42:243–256Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5Weiner S, Traub W (1986) Organization of hydroxiapatite within collagen fibrils. FEBS Lett 206:262–266Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. JBMR 29:2594–2600Yuan YJ, Cowin SC (2008a) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7:1–11Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXS Scans in the study of osteoporotic fractures. J Bone Miner Res 29(12):2594–2600Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–16

    Molecular mechanics of mineralized collagen fibrils in bone

    Get PDF
    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents.United States. Office of Naval Research (N000141010562)United States. Army Research Office (W991NF-09-1-0541)United States. Army Research Office (W911NF-10-1-0127)National Science Foundation (U.S.) (CMMI-0642545

    Relationships, love and sexuality: what the Filipino teens think and feel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to achieve a change among teens' sexual behavior, an important step is to improve our knowledge about their opinions concerning relationships, love and sexuality.</p> <p>Methods</p> <p>A questionnaire including topics on relationships, love and sexuality was distributed to a target population of 4,000 Filipino students from third year high school to third year college. Participants were obtained through multi-stage sampling of clusters of universities and schools. This paper concentrates on teens aged 13 to 18.</p> <p>Results</p> <p>Students reported that they obtained information about love and sexuality mainly from friends. However, they valued parents' opinion more than friends'. They revealed few conversations with their parents on these topics. A majority of them would like to have more information, mainly about emotion-related topics. Almost half of respondents were not aware that condoms are not 100% effective in preventing STIs or pregnancies. More girls, compared to boys, were sensitive and opposed to several types of sexism. After adjusting for sex, age and institution, the belief of 100% condom effectiveness and the approval of pornography and sexism were associated with being sexually experienced.</p> <p>Conclusion</p> <p>There is room for further encouraging parents to talk more with their children about sexuality, specially aspects related to feelings and emotions in order to help them make better sexual choices. Indeed, teens wish to better communicate with their parents on these issues. Condoms are regarded as safer than what they really are by almost half of the participants of this study, and such incorrect knowledge seems to be associated with sexual initiation.</p

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD

    Insights into APC/C: from cellular function to diseases and therapeutics

    Get PDF
    Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics
    corecore