499 research outputs found

    Development of a novel, impurity-scavenging, corrosion-resistant coating for Ni-based superalloy CMSX-4

    Get PDF
    Sulfur, a common impurity arising from atmospheric and environmental contamination, is highly corrosive and detrimental to the lifespan of nickel superalloys in jet engines. However, sulfur-scavenging coatings have yet to be explored. Our study presents the successful development of a stable, uniform, impurity-scavenging Ni-Mn coating on Ni-based superalloy CMSX-4, through electroplating. The coating was characterised via combined scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. An optimal coating thickness of > 600 nm was deposited. The coated alloy was exposed to corrosive salt mixture 98% Na2SO4–2% NaCl at 550 °C for 100 h, mimicking engine exposure conditions, thereby proving that the coating successfully trapped sulfur and prevented its diffusion into an underlying alloy. This work presents a promising development for the prevention of sulfur-induced corrosion in industrial setting such as gas turbine engine, where the effects of sulfur diffusion into the bulk alloy could lead to premature failure

    Effect of Substrate Bed Temperature on Solute Segregation and Mechanical Properties in Ti–6Al–4V Produced by Laser Powder Bed Fusion

    Get PDF
    Titanium alloys are particularly sensitive to temperature during additive manufacturing processes, due to their dual phase microstructure and sensitivity to oxygen uptake. In this paper, laser powder bed fusion (LPBF) was used in conjunction with a heated substrate bed at 100 °C, 570 °C and 770 °C to produce specimens of Ti–6Al–4V, to investigate the change in mechanical properties and segregation of alloying elements. An initial increase in ductility was observed when increasing the temperature from 100 °C to 570 °C, followed by a significant loss in ductility when samples were produced at 770 °C. A suite of multi-scale characterisation techniques revealed that the as-printed microstructure was drastically different across the range of temperatures. At 100 °C, α + α′ phases were identified. Deformation twinning was extensively observed in the a phase, with Al and V segregating at the twin interfaces. At 570 °C (the most ductile sample), α′, α and nano-particles of β were observed, with networks of entangled dislocations showing V segregation. At 770 °C, no martensitic α′ was identified. The microstructure was an α + β microstructure and an increased volume fraction of tangled dislocations with localised V segregation. Thermodynamic modelling based on the Gibbs-free energy of formation showed that the increased V concentration at dislocations was insufficient to locally nucleate β phase. However, b-phase nucleation at grain boundaries (not dislocations) caused pinning of grain boundaries, impeding slip and leading to a reduction in ductility. It is likely that the increased O-content within specimens printed at increased temperatures also played a key role in high-temperature embrittlement. Building operations are therefore best performed below sub-transus temperatures, to encourage the growth of strengthening phases via solute segregation, and the build atmosphere must be tightly controlled to reduce oxygen uptake within the samples

    Polyfunctional Hiv-Specific Antibody Responses Are Associated with Spontaneous Hiv Control

    Get PDF
    Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune–recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure

    Reliability and Diagnostic Performance of CT Imaging Criteria in the Diagnosis of Tuberculous Meningitis

    Get PDF
    The original publication is available at http:// www.plosone.orgPublication of this article was funded by the Stellenbosch University Open Access Fund.Introduction: Abnormalities on CT imaging may contribute to the diagnosis of tuberculous meningitis (TBM). Recently, an expert consensus case definition (CCD) and set of imaging criteria for diagnosing basal meningeal enhancement (BME) have been proposed. This study aimed to evaluate the sensitivity, specificity and reliability of these in a prospective cohort of adult meningitis patients. Methods: Initial diagnoses were based on the CCD, classifying patients into: ‘Definite TBM’ (microbiological confirmation), ‘Probable TBM’ (diagnostic score $10), ‘Possible TBM’ (diagnostic score 6–9), ‘Not TBM’ (confirmation of an alternative diagnosis) or ‘Uncertain’ (diagnostic score of ,6). CT images were evaluated independently on two occasions by four experienced reviewers. Intra-rater and inter-rater agreement were calculated using the kappa statistic. Sensitivities and specificities were calculated using both ‘Definite TBM’ and either ‘Definite TBM’ or ‘Probable TBM’ as gold standards. Results: CT scan criteria for BME had good intra-rater agreement (k range 0.35–0.78) and fair to moderate inter-rater agreement (k range 0.20–0.52). Intra- and inter-rater agreement on the CCD components were good to fair (k = ranges 0.47–0.81 and 0.21–0.63). Using ‘Definite TBM’ as a gold standard, the criteria for BME were very specific (61.5%–100%), but insensitive (5.9%–29.4%). Similarly, the imaging components of the CCD were highly specific (69.2–100%) but lacked sensitivity (0–56.7%). Similar values were found when using ‘Definite TBM’ or ‘Probable TBM’ as a gold standard. Discussion: The fair to moderate inter-rater agreement and poor sensitivities of the criteria for BME suggest that little reliance should be placed in these features in isolation. While the presence of the CCD criteria of acute infarction or tuberculoma(s) appears useful as rule-in criteria, their absence is of little help in excluding TBM. The CCD and criteria for BME, as well as any new criteria, need to be standardized and validated in prospective cohort studies.Funding: KB received funding from the Discovery Foundation (Academic Fellowship Award; http://www.discovery.co.za/portal/loggedout-individual/discoverycommunity- about), College of Neurology of South Africa (K.M. Browse Award; http://www.collegemedsa.ac.za/Default.aspx ) and the University of Stellenbosch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Publisher's versio

    Exploring the experiences of being an ethnic minority student within undergraduate nurse education: A qualitative study

    Get PDF
    © 2019 The Author(s). Background: Students studying in a country where another language is spoken face multiple challenges including their ability to fully integrate with peers and academic pressures in trying to obtain an undergraduate nursing degree. The aim of the study was to explore the lived experiences of students, from varying cultural and ethnic backgrounds, undertaking an undergraduate nursing degree. Methods: The study adopted a qualitative design and eight individual semi-structured interviews were conducted. The interviews were analysed using manifest content analysis according to Graneheim and Lundman. Results: Students reported feelings of isolation and the lack of opportunities to integrate with native students within academia and practice. The need for personal support was a crucial factor that was independent of gender and students reported challenges related to both language and culture during the programme. Conclusions: Suggestions arising from this study includes appropriate support systems within academia and practice. It is imperative that universities and practice settings promote and integrate cultural awareness within academia and practice in meeting the needs of students and providing culturally appropriate nursing care, thereby providing opportunities for all students to become competent and professional practitioners

    Five-year stability in associations of health-related quality of life measures in community-dwelling older adults: the Rancho Bernardo Study

    Get PDF
    Ó The Author(s) 2010. This article is published with open access at Springerlink.com Objective This study examines the five-year stability of the association of SF-12 and SF-6D scores with scores on the longer SF-36 and its domains in community-dwelling older men and women. Methods Participants were 653 men and 917 women aged 50 and older who completed mailed surveys of HRQOL (1995, 2000). SF-36 physical (PCS) and mental (MCS) component scores, domain scores; SF-12 PCS and MCS scores; and SF-6D scores were computed. Results Average age in 1995 was 68.2 ± 10.7 for men and 69.8 ± 11.3 for women. In 1995 and 2000, men had significantly higher scores on all measures (P’s \ 0.001). All three authors have contributed to the conception and design of the work and data analysis plan, interpretation of the data, and preparing the manuscript for publication. The second and third authors were in charge of the acquisition of subjects. The first author conducted the data analysis and wrote the first draft which was revised by the second and third authors. All authors were involved with the data in a manner substantial enough to take public responsibility for it. All authors believe the manuscript represents valid work and have reviewed the final version of the manuscript and approve of it for publication

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Predicting Individuals' Learning Success from Patterns of Pre-Learning MRI Activity

    Get PDF
    Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills

    Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging

    Get PDF
    When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time
    • …
    corecore