460 research outputs found

    A Novel Therapy for Melanoma Developed in Mice: Transformation of Melanoma into Dendritic Cells with Listeria monocytogenes

    Get PDF
    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal

    Iron chelation therapy in the myelodysplastic syndromes and aplastic anemia: a review of experience in South Korea

    Get PDF
    Emerging clinical data indicate that transfusion-dependent patients with bone marrow-failure syndromes (BMFS) are at risk of the consequences of iron overload, including progressive damage to hepatic, endocrine, and cardiac organs. Despite the availability of deferoxamine (DFO) in Korea since 1998, data from patients with myelodysplastic syndromes, aplastic anemia, and other BMFS show significant iron overload and damage to the heart and liver. The recent introduction of deferasirox, a once-daily, oral iron chelator, may improve the availability of iron chelation therapy to iron-overloaded patients, and improve compliance in patients who may otherwise find adherence to the DFO regimen difficult

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Structural and biophysical properties of the integrin-associated cytoskeletal protein talin

    Get PDF
    Talin is a large cytoskeletal protein (2541 amino acid residues) which plays a key role in integrin-mediated events that are crucial for cell adhesion, migration, proliferation and survival. This review summarises recent work on the structure of talin and on some of the structurally better defined interactions with other proteins. The N-terminal talin head (approx. 50 kDa) consists of an atypical FERM domain linked to a long flexible rod (approx. 220 kDa) made up of a series of amphipathic helical bundle domains. The F3 FERM subdomain in the head binds the cytoplasmic tail of integrins, but this interaction can be inhibited by an interaction of F3 with a helical bundle in the talin rod, the so-called “autoinhibited form” of the molecule. The talin rod contains a second integrin-binding site, at least two actin-binding sites and a large number of binding sites for vinculin, which is important in reinforcing the initial integrin–actin link mediated by talin. The vinculin binding sites are defined by hydrophobic residues buried within helical bundles, and these must unfold to allow vinculin binding. Recent experiments suggest that this unfolding may be mediated by mechanical force exerted on the talin molecule by actomyosin contraction

    The evolution and appearance of c3 duplications in fish originate an exclusive teleost c3 gene form with anti- inflammatory activity

    Get PDF
    12 páginas, 6 figuras, 3 tablas.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe complement system acts as a first line of defense and promotes organism homeostasis by modulating the fates of diverse physiological processes. Multiple copies of component genes have been previously identified in fish, suggesting a key role for this system in aquatic organisms. Herein, we confirm the presence of three different previously reported complement c3 genes (c3.1, c3.2, c3.3) and identify five additional c3 genes (c3.4, c3.5, c3.6, c3.7, c3.8) in the zebrafish genome. Additionally, we evaluate the mRNA expression levels of the different c3 genes during ontogeny and in different tissues under steady-state and inflammatory conditions. Furthermore, while reconciling the phylogenetic tree with the fish species tree, we uncovered an event of c3 duplication common to all teleost fishes that gave rise to an exclusive c3 paralog (c3.7 and c3.8). These paralogs showed a distinct ability to regulate neutrophil migration in response to injury compared with the other c3 genes and may play a role in maintaining the balance between inflammatory and homeostatic processes in zebrafishThis work has been funded by the project CSD2007-00002 “Aquagenomics” from the Spanish Ministerio de Ciencia e Innovación, the ITN 289209 “FISHFORPHARMA” (EU) and project 201230E057 from the Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC).Peer reviewe

    The role of DNA microarrays in Toxoplasma gondii research, the causative agent of ocular toxoplasmosis

    Get PDF
    Ocular toxoplasmosis, which is caused by the protozoan parasite Toxoplasma gondii, is the leading cause of retinochoroiditis. Toxoplasma is an obligate intracellular pathogen that replicates within a parasitophorous vacuole. Infections are initiated by digestion of parasites deposited in cat feces or in undercooked meat. Parasites then disseminate to target tissues that include the retina where they then develop into long-lived asymptomatic tissue cysts. Occasionally, cysts reactivate and growth of newly emerged parasites must be controlled by the host’s immune system or disease will occur. The mechanisms by which Toxoplasma grows within its host cell, encysts, and interacts with the host’s immune system are important questions. Here, we will discuss how the use of DNA microarrays in transcriptional profiling, genotyping, and epigenetic experiments has impacted our understanding of these processes. Finally, we will discuss how these advances relate to ocular toxoplasmosis and how future research on ocular toxoplasmosis can benefit from DNA microarrays

    A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis

    Get PDF
    The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2−/− mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2−/− mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2−/− mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts

    Get PDF
    The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system
    corecore