8 research outputs found

    Late Byzantine Mineral Soda High Alumina Glasses from Asia Minor: A New Primary Glass Production Group

    Get PDF
    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Chemical characterisation of archaeological glasses from the Hellenistic site of Jebel Khalid, Syria by electron probe microanalysis

    No full text
    © 2016 The Author(s). Background: Jebel Khalid is a single period Hellenistic site on the west bank of the Euphrates River in northern Syria. The occupation of the site dates from the early 3rd century BCE until its abandonment in the late 70s BCE. The so-called Governor's Palace, an administrative centre on the Acropolis of the site, overlooked this walled Greek garrison city. A considerable quantity of glass, predominantly drinking bowls, was excavated from this building complex. This study concerns the elemental analysis of glass samples from this assemblage by electron probe microanalysis (SEM-WDS). Results: The preliminary analyses presented in this report reveal that the Jebel Khalid glasses are of the silica-sodalime type fluxed with mineral soda, typical of late 1st millennium BCE glass composition. Manganese was employed as the chief decolourant. Glass compositions of monochrome bowls, core-formed and mosaic glass vessels are very similar, despite the different forms, colours and manufacturing techniques of the vessels. Conclusions: While the production centre for the Jebel Khalid glass remains elusive, the similarity to other published Hellenistic glasses from Greek mainland sites, Rhodes, Tel Anafa in Israel, and Gordion in central Turkey, indicates a tightly controlled composition with comparable batch ingredients. Without more comparative material of this date from the Near East and Greece, it is difficult to determine whether production of the vessel glass from this Seleucid site in the Near East occurred in the Aegean region or the Syro-Palestinian Levant, or both. Vessel style and archaeological context lean towards an Aegean connection, but until more comparative glass is analysed, and trace element and isotope data are considered, questions of primary and secondary production remain unresolved
    corecore