50 research outputs found

    Blood Substitutes in Cardiac Surgery

    Full text link
    A safe, inexpensive, noninfectious substitute for red blood cells has long been sought. Despite tremendous advances in blood banking, the logistics of collecting, transporting, and storing human red blood cells contin ues to create infection and shortage problems. The two basic types of blood substitutes currently under devel opment are hemoglobin based and fluorocarbon based. Although they each transport oxygen differently, the basic advantages and limitations are the same. Blood substitute advantages include the unique capacity for room temperature storage, noninfectivity, adequate supply, and low toxicity. Restrictions include limited dosing in the acute period, limited intravascular half-life and, for the fluorocarbons, a requirement for a high PaO2. In addition, there remain questions about the relationship of nitric oxide metabolism to hypertension in hemoglobin solutions. Early clinical and laboratory trials have shown that both types of solutions are effective oxygen-delivery agents, with acceptable side- effect profiles. Clinical trials are currently underway to determine the safety and efficacy of these solutions in patients undergoing cardiopulmonary bypass.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68576/2/10.1177_108925329800200403.pd

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide

    No full text
    Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide

    Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

    No full text
    Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics
    corecore