26 research outputs found

    Dermanyssus gallinae in layer farms in Kosovo: a high risk for salmonella prevalence

    Get PDF
    Background The poultry red mite (PRM), Dermanyssus gallinae (D.g.) is a serious ectoparasitic pest of poultry and potential pathogen vector. The prevalence of D. g. and the prevalence of Salmonella spp. within mites on infested laying poultry farms were investigated in Kosovo. Findings In total, 14 populated layer farms located in the Southern Kosovo were assessed for D. g. presence. Another two farms in this region were investigated 6 months after depopulation. Investigated flocks were all maintained in cages, a common housing system in Kosovo. A total of eight farms were found to be infested with D. g. (50%) at varying levels, including the two depopulated farms. The detection of Salmonella spp. from D. g. was carried out using PCR. Out of the eight layer farms infested with D. g., Salmonella spp. was present in mites on three farms (37.5%). Conclusions This study confirms the high prevalence of D. g. in layer flocks in Kosovo and demonstrates the link between this mite and the presence of Salmonella spp. on infested farms

    Causes of mortality in laying hens in different housing systems in 2001 to 2004

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The husbandry systems for laying hens were changed in Sweden during the years 2001 – 2004, and an increase in the number of submissions for necropsy from laying hen farms was noted. Hence, this study was initiated to compare causes of mortality in different housing systems for commercial laying hens during this change.</p> <p>Methods</p> <p>Based on results from routine necropsies of 914 laying hens performed at the National Veterinary Institute (SVA) in Uppsala, Sweden between 2001 and 2004, a retrospective study on the occurrence of diseases and cannibalism, i.e., pecking leading to mortality, in different housing systems was carried out. Using the number of disease outbreaks in caged flocks as the baseline, the expected number of flocks with a certain category of disease in the other housing systems was estimated having regard to the total number of birds in the population. Whether the actual number of flocks significantly exceeded the expected number was determined using a Poisson distribution for the variance of the baseline number, a continuity correction and the exact value for the Poisson distribution function in Excel 2000.</p> <p>Results</p> <p>Common causes of mortality in necropsied laying hens included colibacillosis, erysipelas, coccidiosis, red mite infestation, lymphoid leukosis and cannibalism. Less common diagnoses were Newcastle Disease, pasteurellosis and botulism. Considering the size of the populations in the different housing systems, a larger proportion of laying hens than expected was submitted for necropsy from litter-based systems and free range production compared to hens in cages (<it>P </it>< 0.001). The study showed a significantly higher occurrence of bacterial and parasitic diseases and cannibalism in laying hens kept in litter-based housing systems and free-range systems than in hens kept in cages (<it>P </it>< 0.001). The occurrence of viral diseases was significantly higher in indoor litter-based housing systems than in cages (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>The results of the present study indicated that during 2001–2004 laying hens housed in litter-based housing systems, with or without access to outdoor areas, were at higher risk of infectious diseases and cannibalistic behaviour compared to laying hens in cages. Future research should focus on finding suitable prophylactic measures, including efficient biosecurity routines, to reduce the risk of infectious diseases and cannibalism in litter-based housing systems for laying hens.</p

    Acaricide Residues in Laying Hens Naturally Infested by Red Mite Dermanyssus gallinae

    Get PDF
    In the poultry industry, control of the red mite D. gallinae primarily relies worldwide on acaricides registered for use in agriculture or for livestock, and those most widely used are carbamates, followed by amidines, pyrethroids and organophosphates. Due to the repeated use of acaricides - sometimes in high concentrations - to control infestation, red mites may become resistant, and acaricides may accumulate in chicken organs and tissues, and also in eggs. To highlight some situations of misuse/abuse of chemicals and of risk to human health, we investigated laying hens, destined to the slaughterhouse, for the presence of acaricide residues in their organs and tissues. We used 45 hens from which we collected a total of 225 samples from the following tissues and organs: skin, fat, liver, muscle, hearth, and kidney. In these samples we analyzed the residual contents of carbaryl and permethrin by LC-MS/MS

    Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?

    Get PDF
    The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors

    Characterisation of Dermanyssus gallinae glutathione S-transferases and their potential as acaricide detoxification proteins

    Get PDF
    BACKGROUND: Glutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and therefore have a function in multi-drug resistance. As a result, knowledge of GSTs can inform both drug resistance in, and novel interventions for, the control of endo- and ectoparasite species. Acaricide resistance and the need for novel control methods are both pressing needs for Dermanyssus gallinae, a highly economically important haematophagous ectoparasite of poultry. METHODS: A transcriptomic database representing D. gallinae was examined and 11 contig sequences were identified with GST BlastX identities. The transcripts represented by 3 contigs, designated Deg-GST-1, −2 and −3, were fully sequenced and further characterized by phylogenetic analysis. Recombinant versions of Deg-GST-1, −2 and −3 (rDeg-GST) were enzymically active and acaricide-binding properties of the rDeg-GSTs were established by evaluating the ability of selected acaricides to inhibit the enzymatic activity of rDeg-GSTs. RESULTS: 6 of the identified GSTs belonged to the mu class, followed by 3 kappa, 1 omega and 1 delta class molecules. Deg-GST-1 and −3 clearly partitioned with orthologous mu class GSTs and Deg-GST-2 partitioned with delta class GSTs. Phoxim, permethrin and abamectin significantly inhibited rDeg-GST-1 activity by 56, 35 and 17 % respectively. Phoxim also inhibited rDeg-2-GST (14.8 %) and rDeg-GST-3 (20.6 %) activities. CONCLUSIONS: Deg-GSTs may have important roles in the detoxification of pesticides and, with the increased occurrence of acaricide resistance in this species worldwide, Deg-GSTs are attractive targets for novel interventions

    Microbubble moving in blood flow in microchannels: effect on the cell-free layer and cell local concentration

    Get PDF
    Gas embolisms can hinder blood flow and lead to occlusion of the vessels and ischemia. Bubbles in microvessels circulate as tubular bubbles (Taylor bubbles) and can be trapped, blocking the normal flow of blood. To understand how Taylor bubbles flow in microcirculation, in particular, how bubbles disturb the blood flow at the scale of blood cells, experiments were performed in microchannels at a low Capillary number. Bubbles moving with a stream of in vitro blood were filmed with the help of a high-speed camera. Cell-free layers (CFLs) were observed downstream of the bubble, near the microchannel walls and along the centerline, and their thicknesses were quantified. Upstream to the bubble, the cell concentration is higher and CFLs are less clear. While just upstream of the bubble the maximum RBC concentration happens at positions closest to the wall, downstream the maximum is in an intermediate region between the centerline and the wall. Bubbles within microchannels promote complex spatio-temporal variations of the CFL thickness along the microchannel with significant relevance for local rheology and transport processes. The phenomenon is explained by the flow pattern characteristic of low Capillary number flows. Spatio-temporal variations of blood rheology may have an important role in bubble trapping and dislodging.The authors acknowledge the financial support provided by PTDC/SAU-BEB/105650/2008, PTDC/SAU-ENB/ 116929/2010, EXPL/EMS-SIS/2215/2013 and PTDC/QEQ-FTT/4287/ 2014 from FCT (Science and Technology Foundation), COMPETE, QREN and European Union (FEDER).info:eu-repo/semantics/publishedVersio
    corecore