84 research outputs found

    Efficiency of Ontario primary care physicians across payment models : a stochastic frontier analysis

    Get PDF
    Objective The study examines the relationship between the primary care model that a physician belongs to and the efficiency of the primary care physician in Ontario, Canada. Methods Survey data were collected from 183 self-selected physicians and linked to administrative databases to capture the provision of services to the patients served for the 12 month period ending June 30, 2013, and the characteristics of the patients at the beginning of the study period. Two stochastic frontier regression models were used to estimate efficiency scores and parameters for two separate outputs: the number of distinct patients seen and the number of visits. Results Because of missing data, only 165 physicians were included in the analyses. The average efficiency was 0.72 for both outputs with scores varying from 4 % to 93 % for the visits and 5 % to 94 % for the number of patients seen. We observed that there were both very low and very high efficiency scores within each model. These variations were larger than variations in average scores across models

    CAVASS: A Computer-Assisted Visualization and Analysis Software System

    Get PDF
    The Medical Image Processing Group at the University of Pennsylvania has been developing (and distributing with source code) medical image analysis and visualization software systems for a long period of time. Our most recent system, 3DVIEWNIX, was first released in 1993. Since that time, a number of significant advancements have taken place with regard to computer platforms and operating systems, networking capability, the rise of parallel processing standards, and the development of open-source toolkits. The development of CAVASS by our group is the next generation of 3DVIEWNIX. CAVASS will be freely available and open source, and it is integrated with toolkits such as Insight Toolkit and Visualization Toolkit. CAVASS runs on Windows, Unix, Linux, and Mac but shares a single code base. Rather than requiring expensive multiprocessor systems, it seamlessly provides for parallel processing via inexpensive clusters of work stations for more time-consuming algorithms. Most importantly, CAVASS is directed at the visualization, processing, and analysis of 3-dimensional and higher-dimensional medical imagery, so support for digital imaging and communication in medicine data and the efficient implementation of algorithms is given paramount importance

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    BackgroundRegulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Gα-mediated GTP hydrolysis (“GTPase-accelerating proteins” or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Gα GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal FindingsFull-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co-transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor-mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/SignificanceIn cells, RGS14 facilitates the formation of a selective Ras·GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras-binding domain architecture with RGS14

    Ball Lightning and Thermoluminescence

    No full text

    Optimized lens-sparing treatment of retinoblastoma with electron beams

    No full text
    Purpose: The ideal lens-sparing radiotherapy technique for retinoblastoma calls for 100% dose to the entire retina including the ora serrata and zero dose to the lens, Published techniques, most of which use photons, have not accomplished this ideal treatment. We describe here a technique that approaches this ideal configuration using electron beam therapy, Methods and Materials: Dose-modeling calculations were made using a computer program built around a proprietary algorithm, This program calculates 3D dose distribution for electrons and photons and uses the Cimmino feasibility method for the inverse problem of beam weighting to achieve the prescribed dose, The algorithm has been verified in the ocular region by measurements in a RANDO phantom, To search for an ideal lens-sparing beam setup, a stylized phantom of an 8-month-old infant was generated with built-in inhomogeneities, and a phantom of a 5-year-old child was generated from a patient CT series, Results: Of more than 100 different beam setups tested, two 9 MeV electron beams at gantry angles plus and minus 26 degrees from the optic nerve axis achieved the best distribution. Both fields have a lens block and an isocenter between the globe and origin of the optic nerve. When equal doses are given to both fields, the entire extent of the retina (including ora serrata) received 100%, while the lens received 10% or less, Conclusion: The two-oblique-electron-beam technique here described appears to meet most of the stringent dosimetry needed to treat retinoblastoma, It is suitable for a range of ages, from infancy to early childhood years, (C) 1997 Elsevier Science Inc
    corecore