2,745 research outputs found
Non-local modulation of the energy cascade in broad-band forced turbulence
Classically, large-scale forced turbulence is characterized by a transfer of
energy from large to small scales via nonlinear interactions. We have
investigated the changes in this energy transfer process in broad-band forced
turbulence where an additional perturbation of flow at smaller scales is
introduced. The modulation of the energy dynamics via the introduction of
forcing at smaller scales occurs not only in the forced region but also in a
broad range of length-scales outside the forced bands due to non-local triad
interactions. Broad-band forcing changes the energy distribution and energy
transfer function in a characteristic manner leading to a significant
modulation of the turbulence. We studied the changes in this transfer of energy
when changing the strength and location of the small-scale forcing support. The
energy content in the larger scales was observed to decrease, while the energy
transport power for scales in between the large and small scale forcing regions
was enhanced. This was investigated further in terms of the detailed transfer
function between the triad contributions and observing the long-time statistics
of the flow. The energy is transferred toward smaller scales not only by
wavenumbers of similar size as in the case of large-scale forced turbulence,
but by a much wider extent of scales that can be externally controlled.Comment: submitted to Phys. Rev. E, 15 pages, 18 figures, uses revtex4.cl
Technique for Evaluating the Erosive Properties of Ablative Internal Insulation Materials
A technique for determining the average erosion rate versus Mach number of candidate internal insulation materials was developed for flight motor applications in 12 inch I.D. test firing hardware. The method involved the precision mounting of a mechanical measuring tool within a conical test cartridge fabricated from either a single insulation material or two non-identical materials each of which constituted one half of the test cartridge cone. Comparison of the internal radii measured at nine longitudinal locations and between eight to thirty two azimuths, depending on the regularity of the erosion pattern before and after test firing, permitted calculation of the average erosion rate and Mach number. Systematic criteria were established for identifying erosion anomalies such as the formation of localized ridges and for excluding such anomalies from the calculations. The method is discussed and results presented for several asbestos-free materials developed in-house for the internal motor case insulation in solid propellant rocket motors
Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation
Procedures for time-ordering the covariance function, as given in a previous
paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended
and used to show that the response function associated at second order with the
Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber)
energy balance. These time-ordering procedures also allow the two-time
formulation to be reduced to time-independent form by means of exponential
approximations and it is verified that the response equation does not have an
infra-red divergence at infinite Reynolds number. Lastly, single-time
Markovianised closure equations (stated in the previous paper above) are
derived and shown to be compatible with the Kolmogorov distribution without the
need to introduce an ad hoc constant.Comment: 12 page
Texture, twinning and metastable "tetragonal" phase in ultrathin films of HfO<sub>2</sub> on a Si substrate
Thin HfO<sub>2</sub> films grown on the lightly oxidised surface of (100) Si wafers have been examined using dark-field transmission electron microscopy and selected area electron diffraction in plan view. The polycrystalline film has a grain size of the order of 100 nm and many of the grains show evidence of twinning on (110) and (001) planes. Diffraction studies showed that the film had a strong [110] out-of-plane texture, and that a tiny volume fraction of a metastable (possibly tetragonal) phase was retained. The reasons for the texture, twinning and the retention of the metastable phase are discussed
Gauge symmetry and Slavnov-Taylor identities for randomly stirred fluids
The path integral for randomly forced incompressible fluids is shown to have
an underlying Becchi-Rouet-Stora (BRS) symmetry as a consequence of Galilean
invariance. This symmetry must be respected to have a consistent generating
functional, free from both an overall infinite factor and spurious relations
amongst correlation functions. We present a procedure for respecting this BRS
symmetry, akin to gauge fixing in quantum field theory. Relations are derived
between correlation functions of this gauge fixed, BRS symmetric theory,
analogous to the Slavnov-Taylor identities of quantum field theory.Comment: 5 pages, no figures, In Press Physical Review Letters, 200
A comparison of the in vitro and in planta responses of Phytophthora cinnamomi isolates to phosphite
Research in plant pathology often relies on testing interactions between a fungicide and a pathogen in vitro and extrapolating from these results what may happen in planta. Likewise, results from glasshouse experiments are used to estimate what will happen if the fungicide is applied in the field. However, it is difficult to obtain conditions in vitro and in the glasshouse which reflect the conditions where the fungicide may eventually be used, in the field.
The aim of this paper is to compare results of the effect of phosphite on P. cinnamomi isolates in vitro and in planta
1000 GeV gamma rays from Cygnus X-3: An update
Measurements of 1000 GeV gamma-rays from Cygnus X-3 made with the University of Durham facility at Dugway, Utah in 1981/82 are reviewed. The light curve of the 4.8 hour modulated emission is updated and shows evidence significant at the 4.4 sigma level for strong emission (9% of the cosmic ray rate) at phase 0.625 and less significant (1.4 sigma level) indications of weaker emission (3% of the cosmic ray rate) at phase 0.125. The effect constituting the excess on the few nights showing the strongest emission appears to arise from the smallest Cerenkov light signals suggesting a steep gamma-ray spectrum. The 1982 data have been searched unsuccessfully for evidence of emission at phase 0.2, in coincidence with the results from the ultra-high energy (extensive Air Showers (EAS) measurements in 1979-1982. A systematic investigation of a long term variation in the strength of the peak of the 4.8 hr modulated 1000 GeV gamma-ray emission has been made. We find that in addition to the approximately 34 d variation reported by us previously, a stronger effect exists at around 19d
The 1000 GeV gamma rays from ms pulsars
The detection of 1000 GeV gamma-rays with the characteristic 6.1 ms periodicity of the radio pulsar PSR 1953 +29 is reported. This result, significant at the 5.4 beta level, provides the first direct evidence for the association of the 6 ms radio pulsar PSR1953+29 with the gamma-ray source 2CG065+0. Extensive observations of the 1.5 ms pulsar PSR 1937 are also reported
- …
