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The path integral for randomly forced incompressible fluids is shown to have an underlying Becchi-
Rouet-Stora (BRS) symmetry as a consequence of Galilean invariance. This symmetry must be respected
to have a consistent generating functional, free from both an overall infinite factor and spurious relations
amongst correlation functions. We present a procedure for respecting this BRS symmetry, akin to gauge
fixing in quantum field theory. Relations are derived between correlation functions of this gauge-fixed,
BRS symmetric theory, analogous to the Slavnov-Taylor identities of quantum field theory.
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To be consistent with Newtonian physics, the descrip-
tion of fluid dynamics and turbulence must be the same in
all inertial reference frames. For this reason, the role that
Galilean invariance plays in the dynamics of a fluid system
governed by the Navier-Stokes equation has been a major
focus of study for decades [1,2]. The Galilean invariance of
the Navier-Stokes equation plays an important part in the
physical aspects of turbulence [3], in practical aspects of
turbulence modeling [4], and even in fluid animation and
computer graphics applications [5]. Among the symme-
tries of the Navier-Stokes equation, Galilean invariance is
by far the most studied in theoretical approaches to turbu-
lence [1,2,6-9]. The physical constraint of Galilean in-
variance must be taken into account in the modeling of
subgrid-scale stresses in large eddy simulations [6], in
models of multicomponent turbulence [8], in nonperturba-
tive renormalization group analyses of fully developed
turbulence [10], and in probability density transport equa-
tions [11]. Much of the interest has dealt with the infinite
number of exact relations between different correlation
functions implied by Galilean invariance, which are akin
to the Ward-Takahashi identities of quantum field theory
[12]. The most well known of these exact identities relates
the vertex and response functions [2]. Based on this rela-
tion, various inferences have been made about the non-
renormalization of the advective or inertial term in the
Navier-Stokes equation [1,2,7,8,10,13,14].

In this Letter we observe that the Galilean invariant
generating functional for stirred fluids [2,15,16], from
which all the Ward identities are derived, possesses an
overall infinite factor, which must first be extracted before
this functional is well defined. We draw an analogy with
Abelian gauge theory in quantum field theory, whereby the
Galilean invariance is associated with gauge invariance,
and so the infinity arises from integrating the fluid velocity
over gauge equivalent copies (i.e., over an infinite number
of independent inertial reference frames) of the same the-
ory. To remove the infinite factor in the Navier-Stokes
generating functional, the Faddeev-Popov procedure of
quantum field theory [17] is used to “gauge fix”’ the theory,
that is, to fix the theory to a single inertial reference frame.
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The gauge fixing results in the theory no longer appearing
Galilean invariant. However, we demonstrate that this
gauge-fixed (GF) theory possesses an underlying Becchi-
Rouet-Stora (BRS) symmetry [12,18,19], which when in-
voked, restores the Galilean invariance.

This work provides a new insight into the structure of the
Navier-Stokes equation. However, it is not simply a new
way to express the same theory. We show that the infinite
factor associated with the standard dynamic functional has
associated with it much more dire consequences, in that
there exist spurious relations amongst correlation func-
tions. Explicit examples of such spurious relations are
given. We then demonstrate that the gauge-fixing BRS pro-
cedure implemented here not only removes the infinite fac-
tor, but also eliminates these spurious relations, thereby ren-
dering a well-defined generating functional for this theory.
The BRS-invariant functional derived in this Letter is the
consistent and correct functional for the Navier-Stokes
theory that must be used to obtain reliable results.

The standard dynamic generating functional for a stirred
incompressible fluid has been extensively studied for many
years [2,7,8,10,14—16]. It is based on the path integral
approach to classical statistical dynamics [15,20] and is
given by

7= f [DV][Do']exp{—S[V, o]+ f dkdw(J-v+2-a)},
(1)

where the action

S[V, o] = % [dkdwa,.(—k, — 0)Dy(—K)o(k, ©)
- ifdkdwoa(—k, —w)
x [(—iw + )V, (k, @) — Mg, (K)

The fluid velocity is V, the conjugate field is o, J and 3, are
k and o dependent sources. D;;(—k) is the only non-
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vanishing cumulant of the random force, M,g,(k) =

(21)_1{kﬁpay(k) + kyPaB(k)} and Paﬁ(k) = 5&[3 _k|k]|<2ﬁa
and v is the bare fluid viscosity. Throughout this Letter
we will work in wave-vector frequency space.

Consider a second primed reference frame moving with
respect to the unprimed frame at constant velocity ¢ = cn
where f is a unit vector in the direction of motion. The
relations between wave vector and the frequency of an
event in the two frames and the transformations of the

velocity and conjugate fields are given by
k' =Kk, o =w-—-c-k, 3)

Vk, o) =V'(k o —c-k)+cdk)d(w), 4

ok, o) =0k, o —c-K). (5)

The action S and functional measure are invariant under
this Galilean transformation. The Faddeev-Popov proce-
dure of quantum field theory [12,17] is now applied to
show that for J = 3, = 0, the functional in Eq. (1) has an
overall infinite factor. For this, expressing the velocity zero
mode as V(0,0) = V,83(0)5(0) [21], first insert the factor
of unity 1 = [dbé*(V, — b) into Eq. (1) to give

7z = [ [DV][Do] f db*(V, — b) exp{—S[V, o]\ (6)

The observation is now made that the integrand in Eq. (6) is
independent of b. To see this, consider changing from b —
b + a. Then perform a Galilean transformation with boost
velocity ¢ = a in Egs. (3)—(5). The action and measure are
invariant to this transformation and 83(Vy — (b + a)) —
83(Vy — b), thus restoring the integrand to its original
form. Because of the independence of the integrand on
the value of b, the db integral can completely factor out as
an overall infinity as

7= < f db) f [DVI[D]53(V, — b)expl—S[V, o]}, (7)

The term in large parentheses on the right-hand side is the
infinite factor we originally sought to isolate. At this stage
one could simply eliminate this integral since it is just an
overall, albeit infinite, normalization factor. In this case
different choices of b correspond to expressing the theory
in different inertial reference frames. On the other hand,
since the integrand in Eq. (6) is independent of b, we can
also insert any function G(b) into the integrand, for ex-
ample, to render the b integration finite. One convenient
choice is G(b) = exp(— ﬁb - b), where ¢ > 0. Inserting
this into Eq. (7) and now performing the db integration,
leaves the GF functional

7. = ] [DV][De] exp{—s[v, o] - zifv0 - VO}. ®)
In our analogy to gauge theories, all these different possi-
bilities for G(b) above would be called gauge choices.

Problems also arise if one attempts to compute any
correlation function using Eq. (1). For example, consider
(Vo(k, @)Vg(K', ®')). Using the Galilean invariance of the

action, this can be written as
(Vao(k, 0)V(K', ')
_ [[DV][DO'] exp{—S[V, o]} f[DVc]Va(k, w)Vs(k', ')
7[0,0] ’
9)

where the [DV] integration is over all velocity field con-
figurations that are not related by Galilean invariance, and
for each such field configuration the [DV,] integration is
over all field configurations related to the particular field by
a Galilean transformation. The expression Eq. (9) shows
that using the ungauge-fixed functional Z, Eq. (1), the
calculation of a correlation function sums over configura-
tions from all Galilean-related reference frames, which in
general will lead to an infinite, ill-defined quantity. This
same situation would hold for a correlation function com-
prised of any combination of fields. Moreover, since these
infinities are not just simple terms that factor out, it means
they cannot be removed from the generating functional by
simply dividing as Z[J, %]/Z[0, 0].

The gauge-fixing term in Eq. (8) manifestly breaks the
Galilean invariance of the action. We next demonstrate that
this gauge-fixed theory possesses a symmetry akin to the
BRS symmetry of quantum field theory [12,18,19], which
when recognized restores the Galilean invariance of the
gauge-fixed theory. We can multiply the generating func-
tional Zg; in Eq. (8) by the constant [ dndn”exp{in” - n}
where 1 and n* are constant complex conjugate Grass-
mann vectors {n;, 77} = 0, * = 9™ = 0, and are inde-
pendent of k and w. For the “VZ gauge” of Eq. (8) con-
sider the following (infinitesimal) BRS transformation

Sprs Vo= —cl{(n* + ),

i I
OprsM = —Vocd,  OprsM* = +EVOC§v (10)

3

where c is a constant with dimensions of velocity, { is a
real Grassmann parameter (independent of k and w), while
all other modes of the velocity V(k, w) and o(k, w) trans-
form under Oprg as implied by Egs. (3)—(5), except we
replace the velocity boost ¢ by ¢ — c{(9* + n). The
gauge-fixed action,

1 e
SGF[V,O',TI,’I]*]:S[V,O']+EVO’VO_11]' 'n, (11)
is BRS invariant: 8grsSgelV, o, 1, ] = 0. In the gauge-
fixed functional

Zor= ] [DVIDoJdndn" expl— SV, o, m, 1°]

+]dkdw(J.v+z-a)+o*-n+0-n*}, (12)

where @ and 6" are constant Grassmann vector source
terms; it is this BRS invariance that replaces the Galilean
transformation and leads to relations amongst correlation
functions, which in analogy with quantum field theory, will
be called the Slavnov-Taylor identities [12,19].
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To derive these, start with the above gauge-fixed func-
tional Zgg[J, X, @, 0] and displace all fields by the infini-
tesimal BRS transformation Egs. (3)—(5), with
¢ — c{(p* +n) and Egs. (10). Since the measure and
the gauge-fixed action Sgr are BRS invariant, only the
source terms will be displaced. Moreover, as (> = 0, we
can easily expand the exponential. The gauge-fixed func-
tional transforms as Zgg — Zgr + OprsZgr, Where
OgrsZgr = 0 can be written as follows [21]:

i d d \ a

O —-0) — +(—+—10. =

[ (0 —0)- 5.]0 <66’» am)O,}ZGF 0, (13
Wlth O—fdkdw[J()Jawaj()-i-E()jaawx

éim(*) — J;(—)é(k)é(w)] and (—) means (—k, —w).

We now show that the gauge-fixed BRS symmetric
theory Eq. (11) and the resulting Slavnov-Taylor identities
in Eq. (13) are not simply a different way to write the
known Ward identities [2] of this theory. First we demon-
strate that the standard generating functional for the
Navier-Stokes equation [Egs. (1) and (2)], in the absence
of gauge fixing, contains spurious relations amongst cor-
relation functions. To see this, return to Egs. (1) and (2) and
perform the Galilean transformations Egs. (3)—(5). Since
the measure and action § are invariant under this particular
change of variables, it leads to the relation

<exp/dkdw{.](—)'V(k,a)) +3(—) ok, a))}>
= <expfdkdw{J(—) -V(k, w + ¢ k)

e YL K)S(w) + 3(—) - ok, w + c-k)}>, (14)

where the averaging on both sides is with respect to the
same measure and action S in Eq. (2). The above relation
implies an infinite number of spurious relations. For ex-
ample, acting with one derivative §/8J;(—k, w) on both
sides and setting J=2X =0, it gives (V;(k, o)) =
(V;(k,  + ¢ - k) — ¢;8°(k)5(w)). Integrating over an in-
finitesimal neighborhood near k = 0, = 0, it leads to the
relation ¢; = 0, which is meaningless, since ¢ is an arbi-
trary real vector which we are free to choose. Likewise,
taking two derivatives 6/6J;(—k;, )6/8J;(—k,, w,) of
Eq. (14) when integrated over an infinitesimal neighbor-
hood near k;, =0, w;, =0 leads to the relation
—c;Ak;Aw(V(0,0)) — c;Ak,Aw,(V;(0,0)) + c;c; =0,
which again requires ¢ = 0, which is senseless. In a similar
fashion, any number of further derivatives of J and/or %,
fields will lead to an infinite number of spurious relations.
These examples show that at order ¢ and all higher orders
the generating functional Eq. (1) contains an infinite num-
ber of spurious relations. Although many papers
[7,8,10,14,16] have studied the generating functional
Eq. (1), to our knowledge this Letter is the first to reveal
this inherent inconsistency.

At O(c), an alternative way to reveal spurious relations
is to work directly with the Ward identity expression. For

the standard generating functional, the standard Ward iden-
tity relation found in Refs. [7,8,10,14] is 9] ;Z = 0, where
0 ; is the operator defined after Eq. (13) and Z is the
generating functional Eq. (1). Consider §/6J;,(—k, —w)X
OAjIJZE:OZ = 0, this leads to the relation (k; == V,(k, ) —
8;;6°(k)8(w)) = 0. Contract this with §,;, then fluid in-
compressibility implies that 8°(k)&(w) = 0, which is cer-
tainly false for k = 0 and w = 0. However, now we can
exhibit an infinite number of such spurious relations all at
O(c). For example, if two derivatives are taken &/
8J.(—ky, —w,)8/8),(—K, —w)OjIJ:E:‘)Z=O, then after
contraction, fluid incompressibility implies the relation
83(k,)8(w,)XV,,(k, w)) = 0, but the mean fluid velocity
(V(k, w)) can be generally nonzero for an appropriate
noise force. So, this relation is also spurious. Moreover,
if one more derivative is taken with respect to J or 3, ir-
respective of the properties of the noise force, the resulting
relation would be spurious. And similarly, any additional
number of such derivatives will lead to an infinite number
of spurious relations in which they will wrongly imply
higher order velocity correlation functions are vanishing.

In contrast, for the case of our gauge-fixed generating
functional Eq. (12), all spurious relations have been elim-
inated. At all orders higher than O(c), this follows ele-
gantly from the Grassmann property that (> = 0. And at
O(c) the first nontrivial relation is obtained by differentiat-
ing Eq. (13) by 6/6J¢,6/86; to give

§<vmvo,~> + () =0, (15)

which can be checked is correct with a similar relation
found by replacing the differentiation by 6; with 0;”
Further O(c) relations can be obtained by taking more J
and/or more 0 or 0" derivatives, but due to factorization,
these are all proportional to this fundamental identity
Eq. (15), and so the GF-BRS functional Eq. (12) is com-
pletely free of spurious relations.

These considerations support our statement that the
generating functional Eq. (12) is the correct and consistent
one for this theory, and the correct expression of the
Galilean invariance is the Slavnov-Taylor identities
Eq. (13), found in this Letter.

Until now, we have been working with the generating
functional Zgg Eq. (12), but all our considerations can be
applied to the generating functionals of connected dia-
grams W = InZgr and one-particle irreducible diagrams
(i.e., the effective action), I[V. o, n.,n;]=
-W[J.2,0,01+6"-q,+0 -n,+ [dkdo(J -V, +

2 o,). From the Ilatter we see that J, =
= L gr =L
Bvcl: 2k Ll’ 0 - *Ll’ 0] an;-l .

The noise- averaged ﬁelds in the presence of the sources
are denoted Vg = (V)sources» €tc. In terms of I" we can
immediately write down the identity Eq. (13) in the form
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ioT i aT
0=-Vil-—— ==V —— 4 (ny + 1)
E0 my €0 oy Ty
avel(k, oT a0 (k,
xfdkdw<kj Vinlk, ) ; : 7k, ©)
Jo  oVI(K ) Jw
8T 5T
X §5(k)8(0)——). 16
ok O (“’)avyl(k,w)> (16)

We now apply this formula to the problem at hand. The
dependence of I' on 0 and %™ is simple since these constant
Grassmann vector fields do not interact nor do they couple
to the velocity or conjugate fields. Thus, we can immedi-
ately write [V, o0, mq,m5]1= —ing - na + 1TV, 04],
where IV, o] does not depend on either 5 or nJ,
with the first few terms written in [22].

The pertinent identity we seek is then obtained by
inserting I' into Eq. (16) and then differentiating this
with respect to 8/817515/8V[°1(k, 0)8/80°(—k, —w) fol-
lowed by setting 9! = 5%, = V¢! = ¢! = 0. Note that the
terms in Eq. (16) depending on the gauge parameter ¢ do
not contribute, thus giving the identity [7,8,10,14]
— k2T (—k, —wsk, @) = T20(0,0, -k, — (1 k, w).
This well known identity, has been explicitly verified up to
one-loop order [1,7]. The GF-BRS theory preserves this
identity as it should, but this theory is moreover free of all
spurious relations. In addition, the origin of this identity is
seen through the GF-BRS approach as arising in the limit
of vanishing mean translational velocity, but completely
independent of the properties of the fluctuating velocity.
This conclusion, in agreement with [13,14], is seen here in
a systematic, mathematically consistent, derivation.

The implications and consequences of Galilean invari-
ance for Navier-Stokes fluid dynamics have been outstand-
ing questions for some time now [1,2,6—11,13,14]. The
formulation of the Navier-Stokes equation subject to ran-
dom forcing as a classical stochastic field theory
[2,7,8,10,14—16] opens up the way to apply the systematic
techniques originally developed for quantum fields [19].
This Letter has shown that a field theoretic approach
provides clear understanding of the Galilean symmetry
through its close relation to gauge fixing and BRS sym-
metry; the constraint singling out a unique reference frame
leads to a global symmetry with anticommuting parameters
first used in quantum gauge field theory [18].

In summary, we have discovered a new symmetry in
Galilean invariant classical stochastic field theories, which
provides a powerful new way to think about the analysis of
these systems. In this Letter we focused on the Navier-
Stokes equation but in broader terms our analysis applies
also to other Galilean invariant theories such as the KPZ
equation [23], magnetohydrodynamics, and the Burgers
equation. An immediate and important consequence of
our result is that, within the presently understood generat-
ing functionals for these theories, there are spurious rela-
tions which our gauge-fixing procedure corrects. The treat-
ment in this Letter assumed a stochastic noise force, but

formally our treatment is also applicable without the noise
force. Our work, apart from now providing the mathemati-
cally consistent expression for functionals of Galilean
invariant stochastic field theories, would be important in
numerical and simulation calculations of these theories.
We thank W.D. McComb for discussions. Support pro-
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