5 research outputs found

    Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.)

    No full text
    This study aimed to assess the mechanisms of innate immune function responses to silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP) exposure alone and its associated mercury (Hg) in European eel (Anguilla anguilla L.) phagocytes isolated from peritoneum (P-phagocytes), gill (G-phagocytes), head kidney (HK-phagocytes) and spleen (S-phagocytes). The study evaluated viability, phagocytosis, oxidative burst activity (OBA) and lipid peroxidation (LPO). Four groups were made: (1) 2 x 10(6) phagocytes + RPMI-1640 (control), (2) 2 x 10(6) phagocytes + IONP (2.5 mg L-1), (3) 2 x 10(6) phagocytes + Hg (50 mu g L-1) and (4) 2 x 10(6) phagocytes + IONP + Hg. Samplings were performed at 0, 2, 4, 8, 16, 24, 48 and 72 h of exposure. A. anguilla P-, G-, HK- and S-phagocytes in vitro exposure to IONP alone revealed either increased (except HK-phagocytes at 16 h) or no change in viability, suggesting that the cells are metabolically active and resistant to IONP exposure alone. In terms of phagocytes overactivation and reactive oxygen species (ROS) production as an indirect mechanism of immunotoxicity, the phagocytes responded in the following manner: P->S->HK-=G-phagocytes for IONP exposure alone, S->HK->P-=G-phagocytes for Hg exposure alone and HK->G-=S->P-phagocytes for concomitant exposure. Overall, considering Hg as a surrogate for metals and its association with IONP, as well as the likelihood that it could pose a serious threat to aquatic organisms by modulating their immune defense mechanisms if accidentally discharged into the aquatic environment, current results suggest that the step of IONP-metal complex removal must not be underrated and should be processed without any more ado

    Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L.

    No full text

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AimThe SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery.MethodsThis was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin.ResultsOverall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P ConclusionOne in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore