39 research outputs found

    Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations

    Full text link
    It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets - transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Determination of intrinsic switching field distributions in perpendicular recording media: numerical study of the ΔH(M,ΔM)\Delta H(M, \Delta M) method

    Full text link
    We present a numerical study of the ΔH(M,ΔM)\Delta H(M,\Delta M) method and its ability to accurately determine intrinsic switching field distributions in interacting granular magnetic materials such as perpendicular recording media. In particular, we study how this methodology fails for large ferromagnetic inter-granular interactions, at which point the associated strongly correlated magnetization reversal cannot be properly represented by the mean-field approximation, upon which the ΔH(M,ΔM)\Delta H(M,\Delta M) method is based. In this study, we use a 2-dimensional array of symmetric hysterons that have an intrinsic switching field distribution of standard deviation σ\sigma and ferromagnetic nearest-neighbor interactions JJ. We find the ΔH(M,ΔM)\Delta H(M,\Delta M) method to be very accurate for small J/σJ/\sigma values, while substantial errors develop once the effective exchange field becomes comparable with σ\sigma, corroborating earlier results from micromagnetic simulations. We furthermore demonstrate that this failure is correlated with deviations from data set redundancy, which is a key property of the mean-field approximation. Thus, the ΔH(M,ΔM)\Delta H(M,\Delta M) method fails in a well defined and quantifiable manner that can be easily assessed from the data sets alone.Comment: 13 pages, 9 figure

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial

    Get PDF
    Background Most people with stroke in India have no access to organised rehabilitation services. The effectiveness of training family members to provide stroke rehabilitation is uncertain. Our primary objective was to determine whether family-led stroke rehabilitation, initiated in hospital and continued at home, would be superior to usual care in a low-resource setting. Methods The Family-led Rehabilitation after Stroke in India (ATTEND) trial was a prospectively randomised open trial with blinded endpoint done across 14 hospitals in India. Patients aged 18 years or older who had had a stroke within the past month, had residual disability and reasonable expectation of survival, and who had an informal family-nominated caregiver were randomly assigned to intervention or usual care by site coordinators using a secure web-based system with minimisation by site and stroke severity. The family members of participants in the intervention group received additional structured rehabilitation training—including information provision, joint goal setting, carer training, and task-specific training—that was started in hospital and continued at home for up to 2 months. The primary outcome was death or dependency at 6 months, defined by scores 3–6 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) as assessed by masked observers. Analyses were by intention to treat. This trial is registered with Clinical Trials Registry-India (CTRI/2013/04/003557), Australian New Zealand Clinical Trials Registry (ACTRN12613000078752), and Universal Trial Number (U1111-1138-6707). Findings Between Jan 13, 2014, and Feb 12, 2016, 1250 patients were randomly assigned to intervention (n=623) or control (n=627) groups. 33 patients were lost to follow-up (14 intervention, 19 control) and five patients withdrew (two intervention, three control). At 6 months, 285 (47%) of 607 patients in the intervention group and 287 (47%) of 605 controls were dead or dependent (odds ratio 0·98, 95% CI 0·78–1·23, p=0·87). 72 (12%) patients in the intervention group and 86 (14%) in the control group died (p=0·27), and we observed no difference in rehospitalisation (89 [14%]patients in the intervention group vs 82 [13%] in the control group; p=0·56). We also found no difference in total non-fatal events (112 events in 82 [13%] intervention patients vs 110 events in 79 [13%] control patients; p=0·80). Interpretation Although task shifting is an attractive solution for health-care sustainability, our results do not support investment in new stroke rehabilitation services that shift tasks to family caregivers, unless new evidence emerges. A future avenue of research should be to investigate the effects of task shifting to health-care assistants or team-based community care

    Assessment of supervised machine learning for atmospheric retrieval of exoplanets

    No full text
    Atmospheric retrieval of exoplanets from spectroscopic observations requires an extensive exploration of a highly degenerate and high-dimensional parameter space to accurately constrain atmospheric parameters. Retrieval methods commonly conduct Bayesian parameter estimation and statistical inference using sampling algorithms such as Markov Chain Monte Carlo (MCMC) or Nested Sampling. Recently several attempts have been made to use machine learning algorithms either to complement or replace fully Bayesian methods. While much progress has been made, these approaches are still at times unable to accurately reproduce results from contemporary Bayesian retrievals. The goal of our present work is to investigate the efficacy of machine learning for atmospheric retrieval. As a case study, we use the Random Forest supervised machine learning algorithm which has been applied previously with some success for atmospheric retrieval of the hot Jupiter WASP-12b using its near-infrared transmission spectrum. We reproduce previous results using the same approach and the same semi-analytic models, and subsequently extend this method to develop a new algorithm that results in a closer match to a fully Bayesian retrieval. We combine this new method with a fully numerical atmospheric model and demonstrate excellent agreement with a Bayesian retrieval of the transmission spectrum of another hot Jupiter, HD 209458b. Despite this success, and achieving high computational efficiency, we still find that the machine learning approach is computationally prohibitive for high-dimensional parameter spaces that are routinely explored with Bayesian retrievals with modest computational resources. We discuss the trade offs and potential avenues for the future
    corecore