27 research outputs found

    A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.)

    Get PDF
    Three sesame genotypes (Rama, SI 1666 and IC 21706) were treated with physical (γ-rays: 200 Gy, 400 Gy or 600 Gy) or chemical (ethyl methane sulphonate, EMS: 0.5%, 1.0%, 1.5% or 2.0%) mutagens and their mutagenic effectiveness and efficiency were estimated in the M 2 generation. The M 3 generation was used to identify the most effective mutagen and dose for induction of mutations. The average effectiveness of EMS was much higher than γ-rays. The lowest dose of γ-rays (200 Gy) and the lowest concentration of EMS (0.5%) showed the highest mutagenic efficiency in all genotypes. Analysis of the M 3 generation data based on parameters such as the variance ratio and the difference in residual variances derived from the model of Montalván and Ando indicated that 0.5% concentration of EMS was the most effective treatment for inducing mutations

    Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications

    Full text link
    A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (e=77600 cm-1M-1) and an emission at 514 nm. In vitro toxicity of 1 in the presence of light and in darkness has been studied with HeLa, HaCaT, MCF-7, and SCC-13 cell lines. Moreover, internalization studies of 1 in these cell lines were also performed. These results suggested that 1 is more toxic for SCC-13 and HeLa carcinoma cells than for the HaCaT noncancerous immortal human keratinocytes. Toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). Cellular co-localization experiments revealed preferential localization of the dye in the endoplasmic reticulum.Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valenciana (Project PROMETEOII/2014/047) is gratefully acknowledged.Gorbe, M.; Barba Bon, A.; De La Torre, C.; Gil Grau, S.; Costero Nieto, AM.; Sancenón Galarza, F.; Murguía, JR.... (2015). Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications. Chemistry - An Asian Journal. 10(10):2121-2125. https://doi.org/10.1002/asia.201500325S212121251010Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T., & Hamblin, M. R. (2011). Photodynamic therapy for infections: Clinical applications. Lasers in Surgery and Medicine, 43(7), 755-767. doi:10.1002/lsm.21080Gambichler, T., Breuckmann, F., Boms, S., Altmeyer, P., & Kreuter, A. (2005). Narrowband UVB phototherapy in skin conditions beyond psoriasis. Journal of the American Academy of Dermatology, 52(4), 660-670. doi:10.1016/j.jaad.2004.08.047Roelandts, R. (2002). The history of phototherapy: Something new under the sun? Journal of the American Academy of Dermatology, 46(6), 926-930. doi:10.1067/mjd.2002.121354Rogers, G. S. (2012). Continuous Low-Irradiance Photodynamic Therapy: A New Therapeutic Paradigm. Journal of the National Comprehensive Cancer Network, 10(Suppl_2), S-14-S-17. doi:10.6004/jnccn.2012.0166Ormond, A., & Freeman, H. (2013). Dye Sensitizers for Photodynamic Therapy. Materials, 6(3), 817-840. doi:10.3390/ma6030817Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. doi:10.1038/nrc1071Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., … Peng, Q. (1998). Photodynamic Therapy. JNCI Journal of the National Cancer Institute, 90(12), 889-905. doi:10.1093/jnci/90.12.889Dougherty, T. J. (2002). An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery, 20(1), 3-7. doi:10.1089/104454702753474931MacCormack, M. A. (2008). Photodynamic Therapy in Dermatology: An Update on Applications and Outcomes. Seminars in Cutaneous Medicine and Surgery, 27(1), 52-62. doi:10.1016/j.sder.2007.12.001Babilas, P., Schreml, S., Landthaler, M., & Szeimies, R.-M. (2010). Photodynamic therapy in dermatology: state-of-the-art. Photodermatology, Photoimmunology & Photomedicine, 26(3), 118-132. doi:10.1111/j.1600-0781.2010.00507.xGarrier, J., Bezdetnaya, L., Barlier, C., Gräfe, S., Guillemin, F., & D’Hallewin, M.-A. (2011). Foslip®-based photodynamic therapy as a means to improve wound healing. Photodiagnosis and Photodynamic Therapy, 8(4), 321-327. doi:10.1016/j.pdpdt.2011.06.003Kossodo, S., & LaMuraglia, G. M. (2001). Clinical Potential of Photodynamic Therapy in Cardiovascular Disorders. American Journal of Cardiovascular Drugs, 1(1), 15-21. doi:10.2165/00129784-200101010-00002Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. Journal of Medicinal Chemistry, 47(16), 3897-3915. doi:10.1021/jm040074bShishkova, N., Kuznetsova, O., & Berezov, T. (2013). Photodynamic Therapy in Gastroenterology. Journal of Gastrointestinal Cancer, 44(3), 251-259. doi:10.1007/s12029-013-9496-4Huang, Z. (2005). A Review of Progress in Clinical Photodynamic Therapy. Technology in Cancer Research & Treatment, 4(3), 283-293. doi:10.1177/153303460500400308Huang, Y.-Y., Tanaka, M., Vecchio, D., Garcia-Diaz, M., Chang, J., Morimoto, Y., & Hamblin, M. R. (2012). Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Review of Clinical Immunology, 8(5), 479-494. doi:10.1586/eci.12.37Ochsner, M. (1997). Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology, 39(1), 1-18. doi:10.1016/s1011-1344(96)07428-3Triesscheijn, M., Baas, P., Schellens, J. H. M., & Stewart, F. A. (2006). Photodynamic Therapy in Oncology. The Oncologist, 11(9), 1034-1044. doi:10.1634/theoncologist.11-9-1034Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2008). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in Medical Science, 24(2), 259-268. doi:10.1007/s10103-008-0539-1Foote, C. S. (1991). DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION. Photochemistry and Photobiology, 54(5), 659-659. doi:10.1111/j.1751-1097.1991.tb02071.xHenderson, B. W., & Dougherty, T. J. (1992). HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 55(1), 145-157. doi:10.1111/j.1751-1097.1992.tb04222.xKuimova, M. K., Yahioglu, G., & Ogilby, P. R. (2009). Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants. Journal of the American Chemical Society, 131(1), 332-340. doi:10.1021/ja807484bMACDONALD, I. J., & DOUGHERTY, T. J. (2001). Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 05(02), 105-129. doi:10.1002/jpp.328Maiya, B. G. (2000). Photodynamic Therapy (PDT). Resonance, 5(4), 6-18. doi:10.1007/bf02837901Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002Allison, R. R., Downie, G. H., Cuenca, R., Hu, X.-H., Childs, C. J., & Sibata, C. H. (2004). Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 1(1), 27-42. doi:10.1016/s1572-1000(04)00007-9Majumdar, P., Nomula, R., & Zhao, J. (2014). Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J. Mater. Chem. C, 2(30), 5982-5997. doi:10.1039/c4tc00659cKilloran, J., Allen, L., Gallagher, J. F., Gallagher, W. M., & O′Shea, D. F. (2002). Synthesis of BF2chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chem. Commun., (17), 1862-1863. doi:10.1039/b204317cByrne, A. T., O’Connor, A. E., Hall, M., Murtagh, J., O’Neill, K., Curran, K. M., … Gallagher, W. M. (2009). Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment. British Journal of Cancer, 101(9), 1565-1573. doi:10.1038/sj.bjc.6605247Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 42(1), 77-88. doi:10.1039/c2cs35216hAwuah, S. G., & You, Y. (2012). Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances, 2(30), 11169. doi:10.1039/c2ra21404kLim, S. H., Thivierge, C., Nowak-Sliwinska, P., Han, J., van den Bergh, H., Wagnières, G., … Lee, H. B. (2010). In Vitro and In Vivo Photocytotoxicity of Boron Dipyrromethene Derivatives for Photodynamic Therapy. Journal of Medicinal Chemistry, 53(7), 2865-2874. doi:10.1021/jm901823uGibbs, J. H., Zhou, Z., Kessel, D., Fronczek, F. R., Pakhomova, S., & Vicente, M. G. H. (2015). Synthesis, spectroscopic, and in vitro investigations of 2,6-diiodo-BODIPYs with PDT and bioimaging applications. Journal of Photochemistry and Photobiology B: Biology, 145, 35-47. doi:10.1016/j.jphotobiol.2015.02.006Banfi, S., Caruso, E., Zaza, S., Mancini, M., Gariboldi, M. B., & Monti, E. (2012). Synthesis and photodynamic activity of a panel of BODIPY dyes. Journal of Photochemistry and Photobiology B: Biology, 114, 52-60. doi:10.1016/j.jphotobiol.2012.05.010Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070Li, L., Nguyen, B., & Burgess, K. (2008). Functionalization of the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core. Bioorganic & Medicinal Chemistry Letters, 18(10), 3112-3116. doi:10.1016/j.bmcl.2007.10.103Loudet, A., Ueno, Y., Wu, L., Jose, J., Barhoumi, R., Burghardt, R., & Burgess, K. (2011). Organelle-selective energy transfer: A fluorescent indicator of intracellular environment. Bioorganic & Medicinal Chemistry Letters, 21(6), 1849-1851. doi:10.1016/j.bmcl.2011.01.040Kálai, T., & Hideg, K. (2006). Synthesis of new, BODIPY-based sensors and labels. Tetrahedron, 62(44), 10352-10360. doi:10.1016/j.tet.2006.08.079Guo, B., Peng, X., Cui, A., Wu, Y., Tian, M., Zhang, L., … Gao, Y. (2007). Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 73(2), 206-210. doi:10.1016/j.dyepig.2005.11.007Ziessel, R., Ulrich, G., & Harriman, A. (2007). The chemistry of Bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 31(4), 496. doi:10.1039/b617972jLoudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381nBaruah, M., Qin, W., Vallée, R. A. L., Beljonne, D., Rohand, T., Dehaen, W., & Boens, N. (2005). A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Organic Letters, 7(20), 4377-4380. doi:10.1021/ol051603oJiao, L., Li, J., Zhang, S., Wei, C., Hao, E., & Vicente, M. G. H. (2009). A selective fluorescent sensor for imaging Cu2+ in living cells. New Journal of Chemistry, 33(9), 1888. doi:10.1039/b906441aBoens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132kBarba-Bon, A., Calabuig, L., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+versus Fe3+ in aqueous media. RSC Adv., 4(18), 8962-8965. doi:10.1039/c3ra46845cBarba-Bon, A., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye. Org. Biomol. Chem., 12(43), 8745-8751. doi:10.1039/c4ob01299bEl-Khouly, M. E., Fukuzumi, S., & D’Souza, F. (2013). Photosynthetic Antenna-Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem, 15(1), 30-47. doi:10.1002/cphc.201300715Liu, J.-Y., Huang, Y., Menting, R., Röder, B., Ermilov, E. A., & Ng, D. K. P. (2013). A boron dipyrromethene–phthalocyanine pentad as an artificial photosynthetic model. Chemical Communications, 49(29), 2998. doi:10.1039/c3cc00262dErten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S., & Akkaya, E. U. (2008). A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells. Organic Letters, 10(15), 3299-3302. doi:10.1021/ol8010612Lefebvre, J.-F., Sun, X.-Z., Calladine, J. A., George, M. W., & Gibson, E. A. (2014). Promoting charge-separation in p-type dye-sensitized solar cells using bodipy. Chem. Commun., 50(40), 5258-5260. doi:10.1039/c3cc46133eWang, J.-B., Fang, X.-Q., Pan, X., Dai, S.-Y., & Song, Q.-H. (2012). New 2, 6-Modified Bodipy Sensitizers for Dye-Sensitized Solar Cells. Chemistry - An Asian Journal, 7(4), 696-700. doi:10.1002/asia.201100779Kolemen, S., Cakmak, Y., Erten-Ela, S., Altay, Y., Brendel, J., Thelakkat, M., & Akkaya, E. U. (2010). Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers. Organic Letters, 12(17), 3812-3815. doi:10.1021/ol1014762Wang, F., Zhu, Y., Zhou, L., Pan, L., Cui, Z., Fei, Q., … Fan, C. (2015). Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific γ-Glutamyltranspeptidase. Angewandte Chemie International Edition, 54(25), 7349-7353. doi:10.1002/anie.201502899Didier, P., Ulrich, G., Mély, Y., & Ziessel, R. (2009). Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Organic & Biomolecular Chemistry, 7(18), 3639. doi:10.1039/b911587kKowada, T., Maeda, H., & Kikuchi, K. (2015). BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews, 44(14), 4953-4972. doi:10.1039/c5cs00030kFoster, T., Gibson, S., & Raubertas, R. (1996). Response of Photofrin®-sensitised mesothelioma xenografts to photodynamic therapy with 514 nm light. British Journal of Cancer, 73(8), 933-936. doi:10.1038/bjc.1996.184Grosjean, P., Wagnieres, G., Fontolliet, C., van den Bergh, H., & Monnier, P. (1998). Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with Photofrin II. British Journal of Cancer, 77(11), 1989-1995. doi:10.1038/bjc.1998.330Bays, R., Wagnières, G., Robert, D., Braichotte, D., Savary, J.-F., Monnier, P., & van den Bergh, H. (1996). Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry. Applied Optics, 35(10), 1756. doi:10.1364/ao.35.001756Grosjean, P., Savary, J.-F., Wagnières, G., Mizeret, J., Woodtli, A., Theumann, J.-F., … Monnier, P. (1996). Tetra(m-hydroxyphenyl)chlorin clinical photodynamic therapy of early bronchial and oesophageal cancers. Lasers in Medical Science, 11(4), 227-235. doi:10.1007/bf02134913Hartl, B. A., Hirschberg, H., Marcu, L., & Cherry, S. R. (2015). Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 6(3), 770. doi:10.1364/boe.6.000770Mc Gee, M. M., Hyland, E., Campiani, G., Ramunno, A., Nacci, V., & Zisterer, D. M. (2002). Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Letters, 515(1-3), 66-70. doi:10.1016/s0014-5793(02)02440-7Davies, K. J. A. (2000). Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 50(4), 279-289. doi:10.1080/15216540051081010Plaetzer, K., Kiesslich, T., Oberdanner, C., & Krammer, B. (2005). Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection. Current Pharmaceutical Design, 11(9), 1151-1165. doi:10.2174/1381612053507648Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913-922. doi:10.1007/s10495-007-0756-2Caruso, E., Banfi, S., Barbieri, P., Leva, B., & Orlandi, V. T. (2012). Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 114, 44-51. doi:10.1016/j.jphotobiol.2012.05.007Lai, Y.-C., Su, S.-Y., & Chang, C.-C. (2013). Special Reactive Oxygen Species Generation by a Highly Photostable BODIPY-Based Photosensitizer for Selective Photodynamic Therapy. ACS Applied Materials & Interfaces, 5(24), 12935-12943. doi:10.1021/am403593mSilva, E. F. F., Serpa, C., Dąbrowski, J. M., Monteiro, C. J. P., Formosinho, S. J., Stochel, G., … Arnaut, L. G. (2010). Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Photodynamic Therapy. Chemistry - A European Journal, 16(30), 9273-9286. doi:10.1002/chem.201000111Gallagher, W. M., Allen, L. T., O’Shea, C., Kenna, T., Hall, M., Gorman, A., … O’Shea, D. F. (2005). A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia. British Journal of Cancer, 92(9), 1702-1710. doi:10.1038/sj.bjc.6602527Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. doi:10.1038/sj.bjc.6600664Mroz, P., Yaroslavsky, A., Kharkwal, G. B., & Hamblin, M. R. (2011). Cell Death Pathways in Photodynamic Therapy of Cancer. Cancers, 3(2), 2516-2539. doi:10.3390/cancers3022516Lee, J., Giordano, S., & Zhang, J. (2011). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal, 441(2), 523-540. doi:10.1042/bj2011145
    corecore