213 research outputs found

    Vascular basement membranes as pathways for the passage of fluid into and out of the brain

    Get PDF
    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed

    Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial Parkinson's disease (PD). Variation around the LRRK2 locus also contributes to the risk of sporadic PD. The LRRK2 protein contains a central catalytic region, and pathogenic mutations cluster in the Ras of complex protein C terminus of Ras of complex protein (mutations N1437H, R1441G/C and Y1699C) and kinase (G2019S and I2020T) domains. Much attention has been focused on the kinase domain, because kinase-dead versions of mutant LRRK2 are less toxic than kinase-active versions of the same proteins. Furthermore, kinase inhibitors may be able to mimic this effect in mouse models, although the currently tested inhibitors are not completely specific. In this review, we discuss the recent progress in the development of specific LRRK2 kinase inhibitors. We also discuss non-kinase-based therapeutic strategies for LRRK2-associated PD as it is possible that different approaches may be needed for different mutations

    A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.

    Get PDF
    Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2

    High LRRK2 Levels Fail to Induce or Exacerbate Neuronal Alpha-Synucleinopathy in Mouse Brain

    Get PDF
    The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson’s disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy

    Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease

    Get PDF
    The accumulation of amyloid-β in the brain is an essential feature of Alzheimer's disease. However, the impact of amyloid-β-accumulation on neuronal dysfunction on the single cell level in vivo is poorly understood. Here we investigate the progression of amyloid-β load in relation to neuronal dysfunction in the visual system of the APP23×PS45 mouse model of Alzheimer's disease. Using in vivo two-photon calcium imaging in the visual cortex, we demonstrate that a progressive deterioration of neuronal tuning for the orientation of visual stimuli occurs in parallel with the age-dependent increase of the amyloid-β load. Importantly, we find this deterioration only in neurons that are hyperactive during spontaneous activity. This impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Together, our results identify distinct stages of decline in sensory cortical performance in vivo as a function of the increased amyloid-β-load

    Surfactant secretion in LRRK2 knock-out rats : changes in lamellar body morphology and rate of exocytosis

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP

    Mixed Cerebrovascular Disease and the Future of Stroke Prevention

    Get PDF
    Stroke prevention efforts typically focus on either ischemic or hemorrhagic stroke. This approach is overly simplistic due to the frequent coexistence of ischemic and hemorrhagic cerebrovascular disease. This coexistence, termed “mixed cerebrovascular disease”, offers a conceptual framework that appears useful for stroke prevention strategies. Mixed cerebrovascular disease incorporates clinical and subclinical syndromes, including ischemic stroke, subclinical infarct, white matter disease of aging (leukoaraiosis), intracerebral hemorrhage, and cerebral microbleeds. Reliance on mixed cerebrovascular disease as a diagnostic entity may assist in stratifying risk of hemorrhagic stroke associated with platelet therapy and anticoagulants. Animal models of hemorrhagic cerebrovascular disease, particularly models of cerebral amyloid angiopathy and hypertension, offer novel means for identifying underlying mechanisms and developing focused therapy. Phosphodiesterase (PDE) inhibitors represent a class of agents that, by targeting both platelets and vessel wall, provide the kind of dual actions necessary for stroke prevention, given the spectrum of disorders that characterizes mixed cerebrovascular disease

    T Cells Specifically Targeted to Amyloid Plaques Enhance Plaque Clearance in a Mouse Model of Alzheimer's Disease

    Get PDF
    Patients with Alzheimer's disease (AD) exhibit substantial accumulation of amyloid-β (Aβ) plaques in the brain. Here, we examine whether Aβ vaccination can facilitate the migration of T lymphocytes to specifically target Aβ plaques and consequently enhance their removal. Using a new mouse model of AD, we show that immunization with Aβ, but not with the encephalitogenic proteolipid protein (PLP), results in the accumulation of T cells at Aβ plaques in the brain. Although both Aβ-reactive and PLP-reactive T cells have a similar phenotype of Th1 cells secreting primarily IFN-γ, the encephalitogenic T cells penetrated the spinal cord and caused experimental autoimmune encephalomyelitis (EAE), whereas Aβ T cells accumulated primarily at Aβ plaques in the brain but not the spinal cord and induced almost complete clearance of Aβ. Furthermore, while a single vaccination with Aβ resulted in upregulation of the phagocytic markers triggering receptors expressed on myeloid cells-2 (TREM2) and signal regulatory protein-β1 (SIRPβ1) in the brain, it caused downregulation of the proinflammatory cytokines TNF-α and IL-6. We thus suggest that Aβ deposits in the hippocampus area prioritize the targeting of Aβ-reactive but not PLP-reactive T cells upon vaccination. The stimulation of Aβ-reactive T cells at sites of Aβ plaques resulted in IFN-γ-induced chemotaxis of leukocytes and therapeutic clearance of Aβ
    corecore