193 research outputs found

    High School Students' Proficiency and Confidence Levels in Displaying Their Understanding of Basic Electrolysis Concepts

    Get PDF
    This study was conducted with 330 Form 4 (grade 10) students (aged 15 – 16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students’ understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic instrument, the Electrolysis Diagnostic Instrument (EDI), and (2) to assess students’ confidence levels in displaying their knowledge and understanding of these electrolysis concepts. Analysis of students’ responses to the EDI showed that they displayed very limited understanding of the electrolytic processes involving molten compounds and aqueous solutions of compounds, with a mean score of 6.82 (out of a possible maximum of 17). Students were found to possess content knowledge about several electrolysis processes but did not provide suitable explanations for the changes that had occurred, with less than 45 % of students displaying scientifically acceptable understandings about electrolysis. In addition, students displayed limited confidence about making the correct selections for the items; yet, in 16 of the 17 items, the percentage of students who were confident that they had selected the correct answer to an item was higher than the actual percentage of students who correctly answered the corresponding item. The findings suggest several implications for classroom instruction on the electrolysis topic that need to be addressed in order to facilitate better understanding by students of electrolysis concepts

    The gene for trypsin inhibitor CMe is regulated in trans by the lys 3a locus in the endosperm of barley (Hordeum vulgare L.)

    Full text link
    A cDNA encoding trypsin inhibitor CMe from barley endosperm has been cloned and characterized. The longest open reading frame of the cloned cDNA codes for a typical signal peptide of 24 residues followed by a sequence which is identical to the known amino acid sequence of the inhibitor, except for an Ile/Leu substitution at position 59. Southern blot analysis of wheat-barley addition lines has shown that chromosome 3H of barley carries the gene for CMe. This protein is present at less than 2%–3% of the wild-type amount in the mature endosperm of the mutant Risø 1508 with respect to Bomi barley, from which it has been derived, and the corresponding steady state levels of the CMe mRNA are about I%. One or two copies of the CMe gene (synonym Itc1) per haploid genome have been estimated both in the wild type and in the mutant, and DNA restriction patterns are identical in both stocks, so neither a change in copy number nor a major rearrangement of the structural gene account for the markedly decreased expression. The mutation at the lys 3a locus in Risø 1508 has been previously mapped in chromosome 7 (synonym 5H). A single dose of the wild-type allele at this locus (Lys 3a) restores the expression of gene CMe (allele CMe-1) in chromosome 3H to normal levels

    Distinct phosphorylation requirements regulate cortactin activation by TirEPEC and its binding to N-WASP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation <it>in vitro </it>in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic <it>Escherichia coli </it>(EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin.</p> <p>Results</p> <p>Here we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization <it>in vitro</it>, independently of cortactin phosphorylation.</p> <p>Conclusion</p> <p>We propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.</p

    The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophage classification is mainly based on morphological traits and genome characteristics combined with host information and in some cases on phage growth lifestyle. A lack of molecular tools can impede more precise studies on phylogenetic relationships or even a taxonomic classification. The use of methods to analyze genome sequences without the requirement for homology has allowed advances in classification.</p> <p>Results</p> <p>Here, we proposed to use genome sequence signature to characterize bacteriophages and to compare them to their host genome signature in order to obtain host-phage relationships and information on their lifestyle. We analyze the host-phage relationships in the four most representative groups of Caudoviridae, the dsDNA group of phages. We demonstrate that the use of phage genomic signature and its comparison with that of the host allows a grouping of phages and is also able to predict the host-phage relationships (lytic <it>vs</it>. temperate).</p> <p>Conclusions</p> <p>We can thus condense, in relatively simple figures, this phage information dispersed over many publications.</p

    Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance

    Get PDF
    M13 universal non-homologous oligonucleotide tails incorporated into universal primers have been shown to improve amplification and sequencing performance. However, a few protocols use these tails in the field of food inspection. In this study, two types of M13 tails (by Steffens and Messing) were selected to assess their benefits using universal cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene (16SrRNA) primers in standard procedures. The primer characteristics were tested in silico. Then, using 20 DNA samples of edible species (birds, fishes, and mammals), their performance during PCR amplification (band recovery and intensity) and sequencing (sequence recovery, length, and Phred score) was assessed and compared. While 16SrRNA tailed and non-tailed primers performed similarly, differences were found for COI primers. Messing’s tails negatively affected the reaction outputs, while Steffens’ tails significantly improved the band intensity and the length of the final contigs based on the individual bidirectional read sequence. This different performance could be related to a destabilization effect of certain tails on primers with unfavorable mismatches on the annealing region. Even though our results cannot be generalized because the tail performances are strictly dependent on laboratory conditions, they show that appropriate tails can improve the overall throughput of the analysis, supporting food traceabilit

    Alternating hemiplegia of childhood: Retrospective genetic study and genotype-phenotype correlations in 187 subjects from the US AHCF registry

    Get PDF
    Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies

    Assessment of new public management in health care: the French case

    Get PDF
    • …
    corecore